SDS1101
User Guide
Copyright & Trademark

© 2006, Lantronix. All rights reserved. No part of the contents of this book may be transmitted or reproduced in any form or by any means without the written permission of Lantronix. Printed in the United States of America.

Ethernet is a trademark of XEROX Corporation. UNIX is a registered trademark of The Open Group. Windows 95, Windows 98, Windows 2000, and Windows NT are trademarks of Microsoft Corp. Netscape is a trademark of Netscape Communications Corporation.

Contacts

Lantronix
15353 Barranca Parkway
Irvine, CA 92618, USA
Phone: 949-453-3990
Fax: 949-453-3995

Technical Support
Online: www.lantronix.com/support.

Sales Offices
For a current list of our domestic and international sales offices, go to the Lantronix Web site at http://www.lantronix.com/about/contact/index.html.

Disclaimer

Operation of this equipment in a residential area is likely to cause interference in which case the user, at his or her own expense, will be required to take whatever measures may be required to correct the interference.

Note: This product has been designed to comply with the limits for a Class A digital device pursuant to Part 15 of FCC Rules. These limits are designed to provide reasonable protection against such interference when operating in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy, and if not installed and used in accordance with this guide, may cause harmful interference to radio communications.

Changes or modifications to this device not explicitly approved by Lantronix will void the user's authority to operate this device.

The information in this guide may change without notice. The manufacturer assumes no responsibility for any errors that may appear in this guide.

Note: Export Control Classification Number 5A002, License exception ENC. The following export agreement is required for encryption:

I agree that I will not export or re-export this product or firmware to a national resident of Cuba, Iran, Iraq, Libya, North Korea, Sudan, Syria or any other country to which the United States has embargoed goods; or to anyone on the US Treasury Department's list of Specially Designated Nationals and Blocked Persons, US Commerce Department's Table of Denial Orders and Entities List, or the US State Department's Debarred List. By receiving this product, I am agreeing to the foregoing and I am representing and warranting that I am not located in, under the control of, or a national or resident of any such country or on any such list.
Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Rev.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/06</td>
<td>A</td>
<td>Initial document</td>
</tr>
</tbody>
</table>
Contents

1: Using This Guide ... 8
 Purpose and Audience ... 8
 Chapter Summary .. 8
 Additional Documentation 9

2: Introduction .. 10
 Applications .. 10
 Application Examples .. 10
 Protocol Support .. 12
 Additional Features .. 12
 Configuration Methods .. 12
 Product Information Label 13

3: Getting Started ... 14
 Package Contents ... 14
 Installing the SDS .. 15
 Required Information ... 16
 Hardware Address .. 16
 IP Address ... 16
 Assigning the IP Address: DeviceInstaller 17
 Installing DeviceInstaller 17
 Assigning an IP Address 17
 Adding the Unit to the Manage List 18
 Accessing the SDS1101 Using DeviceInstaller 18
 Viewing the Current Configuration 18
 Next Step .. 20
 Assigning the IP Address: Serial Port Login 20

4: Configuration Using Web-Manager 22
 Accessing SDS1101 Using DeviceInstaller 22
 Network Configuration .. 23
 Automatic IP Address Configuration 24
 Static IP Address Configuration 24
 Ethernet Configuration ... 25
 Server Configuration .. 25
 Host List Configuration ... 27
 Channel 1 Configuration .. 28
 Serial Settings ... 28
 Connection Settings - TCP 30
 Connection Settings - UDP 33
 Apply Settings ... 35
 Apply Factory Defaults 35

5: Configuration via Telnet or Serial Port (Setup Mode) 36
 Accessing Setup Mode .. 36
 Telnet Connection ... 36
Serial Port Connection ___ 37
Exiting Setup Mode ___ 37

6: Setup Mode: Server Configuration 38
Server Configuration (Option 0)__ 38
IP Address __ 38
Set Gateway IP Address ___ 38
Netmask: Number of Bits for Host Part ________________________________ 39
Change Telnet Configuration Password _________________________________ 39
DHCP Name __ 39

7: Setup Mode: Channel Configuration 41
Channel 1 (Option 1) __ 41
Baudrate ___ 41
I/F (Interface) Mode___ 42
Flow ___ 42
Port Number __ 43
Connect Mode ___ 43
a) Incoming Connection __ 44
b) Response .. 45
c) Active Startup __ 45
d) Datagram Type ___ 47
e) Modem Mode __ 47
Send the Escape Sequence (+++) in Modem Mode ________________________ 50
Auto Increment Source Port ___ 50
Remote IP Address __ 50
Remote Port __ 50
DisConnMode ___ 50
Flush Mode (Buffer Flushing) ___ 51
Pack Control __ 52
Packing Interval ___ 53
Trailing Characters __ 53
Send Characters ___ 53
DisConnTime (Inactivity Timeout) ______________________________________ 53
Send Characters ___ 53
Telnet Terminal Type__ 54
Channel (Port) Password __ 54

8: Setup Mode: Advanced Settings 55
Expert Settings (Option 5) __ 55
TCP Keepalive time in seconds ____________________________________ 55
ARP Cache timeout in seconds ____________________________________ 56
Disable Monitor Mode at bootup ____________________________________ 56
HTTP Port Number __ 56
MTU Size ___ 56
Enable alternate MAC__ 56
Ethernet connection type ___ 56
Security Settings (Option 6)___ 57
Disable SNMP__ 57
SNMP Community Name ___ 57
Disable Telnet Setup___ 57
C: Warranty 81
D: Compliance and Disclaimer 82
Index 84

Figures

Figure 2-1. Serial Tunneling Example _____________________________________ 11
Figure 2-2. Direct TCP/IP or Redirector Configuration ________________________ 11
Figure 2-3. Sample Hardware Address ____________________________________ 13
Figure 3-1. SDS1101 Connected to Serial Device and Network _________________ 15
Figure 4-1. Lantronix Web-Manager _______________________________________ 23
Figure 4-2. Network Settings __ 23
Figure 4-3. Server Settings ___ 26
Figure 4-4. Hostlist Settings __ 27
Figure 4-5. Channel Serial Settings ______________________________________ 28
Figure 4-6. TCP Connection Settings ____________________________________ 31
Figure 4-7. UDP Connection Settings ____________________________________ 34
Figure 5-1. MAC Address __ 37
Figure 5-2. Setup Menu Options ___ 37
Figure 6-1. Network Settings __ 38
Figure 6-2. Change Telnet Configuration Password __________________________ 39
Figure 7-1. Serial Port Settings ___ 41
Figure 7-2. Interface Mode __ 42
Figure 7-3. Manual Connection Address Example ___________________________ 46
Figure 8-1. Expert Settings ___ 55
Figure 8-2. Security Settings __ 57
Figure 9-1. TFTP Window __ 63
Figure 12-1. Serial Interface __ 71
Figure 12-2. DB25 Female DCE Interface RS232 ____________________________ 71
Figure 12-3. DB25 Female Interface RS422 (4 wire mode) ____________________ 72

Tables

Table 6-1. BootP/DHCP/AutoIP options ___________________________________ 38
Table 6-2. Standard IP Network Netmasks ___________________________________ 39
Table 7-1. Interface Mode Options ___ 42
Table 7-2. Common Interface Mode Settings _________________________________ 42
Table 7-3. Flow Control Options __ 43
Table 7-4. Reserved Port Numbers ___ 43
Table 7-5. Connect Mode Options __ 44
Table 7-6. Modem Mode Commands __ 49
Table 7-7. Disconnect Mode Options __ 51
Table 7-8. Flush Mode Options __ 52
Table 7-9. Pack Control Options __ 52
Table 9-1. Firmware Files ___ 62
Table 10-1. Monitor Mode Commands ______________________________________ 66
Table 11-1. SDS1101 LEDs __ 67
Table 11-2. Problems and Error Messages ____________________________________ 68
Table 13-1. SDS1101 Technical Specifications ________________________________ 75
1: Using This Guide

Purpose and Audience

This guide provides the information needed to configure, use, and update the SDS1101 device server. It is for system administrators and those responsible for installing and maintaining the SDS.

Chapter Summary

The remaining chapters in this guide include:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>2: Introduction</td>
<td>Describes the main features of the SDS and the protocols it supports.</td>
<td></td>
</tr>
<tr>
<td>3: Getting Started</td>
<td>Provides information for installing your unit and getting it up and running using DeviceInstaller or a serial port connection.</td>
<td></td>
</tr>
<tr>
<td>4: Configuration Using Web-Manager</td>
<td>Details using the Web-Manager to set parameters such as port and server properties.</td>
<td></td>
</tr>
<tr>
<td>5: Configuration via Telnet or Serial Port (Setup Mode)</td>
<td>Provides instructions for accessing Setup Mode (command line interface) using a Telnet connection through the network or a terminal or terminal emulation program through the serial port.</td>
<td></td>
</tr>
<tr>
<td>6: Setup Mode: Server Configuration</td>
<td>Details the network (server) settings</td>
<td></td>
</tr>
<tr>
<td>7: Setup Mode: Channel Configuration</td>
<td>Details the serial port settings.</td>
<td></td>
</tr>
<tr>
<td>8: Setup Mode: Advanced Settings</td>
<td>Details expert and security settings and explains how to reset the unit to factory default values.</td>
<td></td>
</tr>
<tr>
<td>9: Firmware Upgrades</td>
<td>Provides instructions for obtaining the latest firmware and updating the SDS.</td>
<td></td>
</tr>
<tr>
<td>10: Monitor Mode</td>
<td>Provides instructions for accessing and using the command line interface to monitor the network and diagnose problems.</td>
<td></td>
</tr>
<tr>
<td>11: Troubleshooting and Contact Information</td>
<td>Describes common problems and error messages and how to contact Lantronix Technical Support.</td>
<td></td>
</tr>
<tr>
<td>12: Connections and Pinouts</td>
<td>Provides descriptions and illustrations of connection hardware.</td>
<td></td>
</tr>
<tr>
<td>13: Technical Specifications</td>
<td>Lists technical specifications for the SDS.</td>
<td></td>
</tr>
<tr>
<td>A: Alternative Ways to Assign an IP Address</td>
<td>Provides detailed information about using DHCP, AutoIP, BOOTP ARP, and Telnet to assign an IP address.</td>
<td></td>
</tr>
</tbody>
</table>
B: Binary to Hexadecimal Conversions

Provides instructions for converting binary values to hexadecimal.

Additional Documentation

The following information is available on the product CD or the Lantronix Web site: www.lantronix.com

<table>
<thead>
<tr>
<th>Documentation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS1101 Quick Start</td>
<td>Provides the steps for getting the SDS1101 up and running.</td>
</tr>
<tr>
<td>DeviceInstaller Online Help</td>
<td>Provides instructions for using the Windows-based utility to configure the SDS1101 and other Lantronix device servers.</td>
</tr>
<tr>
<td>Com Port Redirector User Guide</td>
<td>Provides information on using the Windows-based utility to create a virtual com port.</td>
</tr>
</tbody>
</table>
2: Introduction

The SDS1101 is a single-port device server that provides a quick, simple, and cost-effective way to bring the advantages of data accessibility and remote management to devices not currently connected to a network.

Applications

The SDS family of Device Servers allows serial devices, such as those listed below, to connect and communicate over Ethernet networks using the IP protocol family (TCP for connection-oriented stream applications and UDP for datagram applications).

The SDS1100 Secure Device Server offers secure data communications using Rijndael Advanced Encryption Standards (AES) and are certified by the National Institute of Standard and Technology (NIST) to meet Federal Information Processing Standards (FIPS) required for data communication on US government and government contractor’s networks.

- Security alarms
- Access control devices
- Fire control panels
- Time/attendance clocks and terminals
- ATM machines
- Data collection devices
- RFID readers
- Universal Power Supply (UPS) management units
- Telecommunications equipment
- Data display devices
- Virtually any asynchronous RS-232, RS422, or RS485 device

Application Examples

Using a method called serial tunneling, the SDS encapsulates serial data into packets and transports them over Ethernet. Using two SDS units, connected by a network, virtual serial connections can extend across a facility or around the world.
The Com Port Redirector software included on the product CD simplifies the integration process by extending the functionality of COM-port-based Windows™ applications. Virtual COM ports, mapped to remote device servers on the network, can replace direct serial connections.

Note: For step-by-step instructions on configuring the SDS for serial tunneling or for use with the Com Port Redirector, see SDS Configuration Tutorials on the Lantronix web site: www.lantronix.com/support.
Protocol Support

The SDS uses the Internet Protocol (IP) for network communications and the Transmission Control Protocol (TCP) to assure that no data is lost or duplicated and that everything sent to the connection arrives correctly at the target.

Supported protocols include:
- ARP, UDP, TCP, ICMP, Telnet, TFTP, AutoIP, DHCP, HTTP, and SNMP for network communications.
- TCP, UDP, and Telnet for connections to the serial port.
- TFTP for firmware updates.
- IP for addressing, routing, and data block handling over the network.
- User Datagram Protocol (UDP) for typical datagram applications in which devices interact with other devices without a point-to-point connection.

Additional Features

Modem Emulation: In modem emulation mode, the SDS can replace dial-up modems. The unit accepts modem AT commands on the serial port and then establishes a network connection to the end device. This arrangement leverages network connections and bandwidth to eliminate dedicated modems and phone lines.

Built-in Web Server: The SDS includes a built-in web server for configuring the unit and displaying operating and troubleshooting information on the attached links to online support.

Configuration Methods

After installation, the SDS requires configuration. For the unit to operate correctly on a network, it must have a unique IP address on the network. There are three basic methods for logging into the SDS and assigning IP addresses and other configurable settings:

DeviceInstaller: Configure the IP address and other network settings on the SDS using a Graphical User Interface (GUI) on a PC attached to a network. (See Assigning the IP Address: DeviceInstaller on page 17.)

Web-Manager: Through a web browser, configure the SDS settings using the Lantronix Web-Manager. (See 4: Configuration Using Web-Manager.)

Serial and Telnet Ports: Use Setup Mode, a command line interface. There are two approaches to accessing Setup Mode: making a Telnet connection to the network port (9999) or connecting a terminal (or a PC running a terminal emulation program) to the unit’s serial port. (See 5: Configuration via Telnet or Serial Port (Setup Mode).)
Product Information Label

The product information label on the underside of the unit contains the following
information about your specific unit:

◆ Bar code
◆ Serial number
◆ Product ID (name)
◆ Product description
◆ Hardware address (also referred to as the Ethernet or MAC address)

The first three bytes of the hardware address are fixed and read 00-20-4A, identifying
the unit as a Lantronix product. The fourth, fifth, and sixth bytes are unique numbers
assigned to each unit.

Figure 2-3. Sample Hardware Address

00-20-4A-14-01-18 or 00:20:4A:14:01:18
This chapter describes how to get your SDS up and running in the shortest possible time.

Package Contents

Verify and inspect the contents of the SDS1101 package using the following list. If any item is missing or damaged, contact your place of purchase immediately.

- SDS1101
- Six-foot DB9F-to-DB25M modem cable
- Power supply
- CD with documentation and software utilities
- Fastening kit
- Quick Start Guide
Installing the SDS

Figure 3-1. SDS1101 Connected to Serial Device and Network

To install the unit:

Complete the following steps in order. Refer to the numbers in the figure above.

Note: See the sections that follow for details about connectors and pinouts.

1. Connect a serial device to your unit.
2. Connect an Ethernet cable to the RJ45 port.
3. Supply power to your unit using the power supply that was included in the packaging.

Note: The required input voltage is 9-30 VDC (center +) or 10-24 VAC (1.5W maximum power required).

4. Supply power to the serial device.

Note: If you encounter a problem, please see LEDs on page 67 for diagnostic information.
Required Information

Before configuring the SDS, have the following information available:

Hardware Address

Take note of the unit’s hardware address (also known as the Ethernet or MAC address). It is on the product label, in the format: 00-20-4a-XX-XX-XX, where the XXs are unique numbers assigned to the product (see Product Information Label on page 13).

Hardware Address: 00-20-4a-____-____-____

IP Address

The SDS must have a unique IP address on your network. This address references the specific unit. By default, the unit is DHCP-enabled and automatically assigned an IP address on DHCP-enabled networks. If you are assigning a static IP address, the systems administrator generally provides the IP address, subnet mask, and gateway.

Note: The factory default IP address is 0.0.0.0 to enable DHCP, BOOTP, and AutoIP. When the units boots, it sends a DHCP broadcast to try and get an IP address. If it receives no reply from a DHCP server, the SDS tries BOOTP. If the SDS does not receive a response from BOOTP, it reverts to an AutoIP address.

IP Address: ______ ______ ______ ______

Subnet Mask: ______ ______ ______ ______

Gateway: ______ ______ ______ ______

You have several options for assigning an IP address and related network settings to your unit. This chapter provides information about using the DeviceInstaller (graphical user interface) and serial port login (command line interface) methods.

Note: For information about other methods of assigning the IP address, such as DHCP, AutoIP, ARP, and Telnet, see A: Alternative Ways to Assign an IP Address.
Assigning the IP Address: DeviceInstaller

This chapter covers the steps for getting the SDS1101 device server online and for viewing its current configuration.

Note: DeviceInstaller online Help provides more detailed information on using DeviceInstaller.

Installing DeviceInstaller

To use the DeviceInstaller utility, first install it from the product CD.

1. Insert the product CD into your CD-ROM drive. The Lantronix SDS1101 DeviceInstaller window displays.
2. If the CD does not launch automatically:
 a) Click the Start button on the Task Bar and select Run.
 b) Enter your CD drive letter, colon, backslash, Launch.exe (e.g., D:\Launch.exe).
3. Click the DeviceInstaller button.
4. Respond to the installation wizard prompts.

Assigning an IP Address

The unit’s IP address must be configured before it can work correctly on a network. The unit’s IP address is normally set to 0.0.0.0 at the factory. The hardware address is on the product label. The unit is DHCP enabled as the default.

To assign an IP address manually:

1. Click StartÆProgramsÆLantronixÆDeviceInstallerÆDeviceInstaller. If your PC has more than one network adapter, a message displays. Select an adapter and click OK.

 Note: If the unit already has an IP address (e.g., DHCP has assigned an IP address), click the Search icon and select the unit from the list of Lantronix device servers on the local network.

2. Click the Assign IP icon.
3. If prompted, enter the hardware address (on the product label) and click Next.
4. Select Assign a specific IP address and click Next.
5. Enter the IP address. The Subnet mask displays automatically based on the IP address; if desired, you may change it. On a local network, you can leave the Default gateway blank (all zeros). Click Next.
6. Click the Assign button and wait several seconds until a confirmation message displays. Click Finish.
7. Select the device from the main window list and select **Ping** from the **Tools** menu. The Ping Device dialog box shows the IP address of the selected unit.

8. From the **Tools** menu, click the **Ping** button. The results display in the Status window. Click the **Clear Status** button to clear the window so you can ping the device again.

 Note: If you do not receive “Reply” messages, make sure the unit is attached to the network properly and the IP address assigned is valid for the particular network segment you are working with. If you are not sure, check with your systems administrator.

9. Click the **Close** button to close the dialog box and return to the main window.

Adding the Unit to the Manage List

Now add the unit to the list of similar Lantronix devices on the network so you can manage and configure it. To perform this step, click the **Search** icon

DeviceInstaller locates the unit and adds it to the list. Now you can manage (configure) the unit so it works with the serial device on the network.

Accessing the SDS1101 Using DeviceInstaller

1. Click **Start**→**Programs**→**Lantronix**→**DeviceInstaller**→**DeviceInstaller**.

2. Click the SDS1101 folder. The list of available Lantronix SDS1101 devices displays.

3. Expand the list of SDS1101s by clicking the + symbol next to the SDS1101 icon. Select the SDS1101 unit by clicking on its IP address to view its configuration.

Viewing the Current Configuration

DeviceInstaller provides a view of the unit's configuration.

To view the unit's current settings:

1. Follow the instructions above to locate the SDS1101.

2. In the right pane, click the **Device Details** tab. The current SDS1101 configuration displays:

<table>
<thead>
<tr>
<th>Name</th>
<th>Configurable field. A name that identifies the SDS1101. Double-click the field, type in the value, and press Enter to complete. This name is not visible on other PCs or laptops using DeviceInstaller.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Configurable field. A group name to categorize the SDS1101. Double-click the field, type in the value, and press Enter to complete. This group name is not visible on other PCs or laptops using DeviceInstaller.</td>
</tr>
<tr>
<td>Comments</td>
<td>Configurable field. Information about the SDS1101. Double-click the field, type in the value, and press Enter to complete. This description or comment is not visible on other PCs or laptops using DeviceInstaller.</td>
</tr>
<tr>
<td>Device Family</td>
<td>Non-configurable field. Displays the SDS1101’s device family type as SDS1101.</td>
</tr>
</tbody>
</table>
3: Getting Started

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Non-configurable field. Displays the device type as SDS1101.</td>
</tr>
<tr>
<td>ID</td>
<td>Non-configurable field. Displays the SDS1101’s ID embedded within the box.</td>
</tr>
<tr>
<td>Hardware Address</td>
<td>Non-configurable field. Displays the SDS1101’s hardware (or MAC) address.</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>Non-configurable field. Displays the firmware currently installed on the SDS1101.</td>
</tr>
<tr>
<td>Extended Firmware Version</td>
<td>Non-configurable field. Displays the full version nomenclature of the firmware.</td>
</tr>
<tr>
<td>Online Status</td>
<td>Non-configurable field. Displays the SDS1101’s status as online, offline, unreachable (the SDS1101 is on a different subnet), or busy (the SDS1101 is currently performing a task).</td>
</tr>
<tr>
<td>Telnet Enabled</td>
<td>Non-configurable field. Permits Telnet sessions.</td>
</tr>
<tr>
<td>Telnet Port</td>
<td>Non-configurable field. Displays the SDS1101’s port for telnet sessions.</td>
</tr>
<tr>
<td>Web Enabled</td>
<td>Non-configurable field. Permits configuration through Web-Manager.</td>
</tr>
<tr>
<td>Web Port</td>
<td>Non-configurable field. Displays the SDS1101’s port for Web-Manager configuration.</td>
</tr>
<tr>
<td>Maximum Baud Rate Supported</td>
<td>Non-configurable field. Displays the SDS1101’s maximum baud rate.</td>
</tr>
<tr>
<td>Note:</td>
<td>The SDS1101 may not currently be running at this rate.</td>
</tr>
<tr>
<td>Firmware Upgradeable</td>
<td>Non-configurable field. Displays True, indicating the SDS1101’s firmware is upgradeable as newer version become available.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Non-configurable field. Displays the SDS1101’s current IP address. To change the IP address, see Assigning an IP Address on page 17.</td>
</tr>
<tr>
<td>Number of COB partitions supported</td>
<td>Non-configurable field. Displays the number of COB partitions supported.</td>
</tr>
<tr>
<td>Supports Dynamic IP</td>
<td>Non-configurable field. Indicates whether the current IP address on the SDS1101 was set manually or assigned by DHCP.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>Non-configurable field. Displays the SDS1101’s current subnet mask. To change the subnet mask, see Assigning an IP Address on page 17.</td>
</tr>
<tr>
<td>Gateway</td>
<td>Non-configurable field. Displays the SDS1101’s current gateway. To change the gateway, see Assigning an IP Address on page 17.</td>
</tr>
<tr>
<td>Number of Ports</td>
<td>Non-configurable field. Displays the number of ports on the SDS1101.</td>
</tr>
<tr>
<td>TCP Keepalive</td>
<td>Non-configurable field. Displays the SDS1101’s TCP keepalive value. The value is in the range 1-65s, and the default setting is 45.</td>
</tr>
</tbody>
</table>
Supports Configurable Pins

Non-configurable field. Displays **False**.

Supports Email Triggers

Non-configurable field. Displays **False**.

Supports AES Data Stream

Non-configurable field. Displays **False**.

Supports 485

Non-configurable field. Displays **True**. The SDS1101 supports the RS-485 protocol.

Supports 920K Baudrate

Non-configurable field. Displays **False**. SDS1101 supports baud rates up to 230 Kbaud.

Supports HTTP Server

Non-configurable field. Displays **True**.

Supports HTTP Setup

Non-configurable field. Displays **True**.

Supports 230K Baud Rate

Non-configurable field. SDS1101 supports a baud rate of 230 Kbaud.

Next Step

Now that the SDS has an IP address and other initial settings, you can configure it.

1. Double-click the unit in the list. Details about the unit display.

2. You have the following options:
 - To configure the unit using a Web browser, click the **Web Configuration** tab. The Lantronix Web-Manager window displays in your browser. Continue with 4: **Configuration Using Web-Manager**.

 Note: To assign Expert and Security settings, you must use the **Setup Mode window in a Telnet session**.
 - To configure the unit using a Telnet session, click the **Telnet Configuration** tab. The Setup Mode window displays. Continue with 5: **Configuration via Telnet or Serial Port (Setup Mode)**.

Assigning the IP Address: Serial Port Login

To assign the IP address and other network settings using a serial connection:

1. Connect a console terminal or a PC running a terminal emulation program to the unit's serial port. The default serial port settings are **9600 baud, 8 bits, no parity, 1 stop bit, no flow control**.

2. To enter Setup Mode, cycle the unit's power (power off and back on). After power-up, the self-test begins and the red Diagnostic LED starts blinking. **You have one second** to enter three lowercase **x** characters.

 Note: The easiest way to enter Setup Mode is to hold down the **x** key at the terminal (or emulation) while powering up the unit.

3. Select 0 (Server Configuration) and follow the prompts until you get to IP **address**.

4. Enter the new IP address, subnet mask, and gateway (if applicable).
5. Do one of the following:

- Continue with 5: Configuration via Telnet or Serial Port (Setup Mode).
- Select 9 to save and exit Setup Mode. The unit performs a power reset.
4: Configuration Using Web-Manager

You must configure the unit so it can communicate on a network with your serial device. For example, you must set the way the unit will respond to serial and network traffic, how it will handle serial packets, and when to start or close a connection.

The unit’s configuration is stored in nonvolatile memory and is retained without power. You can change the configuration at any time. The unit performs a reset after you change and store the configuration.

In this chapter, we describe how to configure the SDS1101 using Web-Manager, Lantronix’s browser-based configuration tool. (For information on using Setup Mode, our command line configuration interface, see 5: Configuration via Telnet or Serial Port (Setup Mode).

Note: The examples in this section show a typical device. Your device may have different configuration options.

Accessing SDS1101 Using DeviceInstaller

Note: Make note of the hardware (MAC) address. You will need it to locate the SDS1101 using DeviceInstaller. For more information on the hardware address, see Hardware Address on page 16.

Follow the instructions on the product CD to install and run DeviceInstaller.

1. Click StartÆProgramsÆLantronixÆDeviceInstallerÆDeviceInstaller. If the PC has more than one network adapter, a message displays requesting the selection of a network adapter. Select an adapter and click OK.

2. Click the Search icon . The list of Lantronix device servers displays in the left pane.

3. Click the SDS folder. The list of available SDS products displays.

4. Expand the list of SDS1101s by clicking the + symbol next to the SDS1101 icon.

5. Select the SDS1101 unit by clicking its hardware address.

6. In the right pane, click the Web Configuration tab.

7. To view the SDS1101’s Web-Manager in the current DeviceInstaller window, click the Go button. To open the Web-Manager in a web browser, click the External Browser button. The Web-Manager displays.

Note: Alternatively, to open Web-Manager, open your web browser and enter the IP address of the SDS1101.
The main menu is in the left pane of the Web-Manager window.

Network Configuration

The unit’s network values display when you select **Network** from the main menu. The following sections describe the configurable parameters on the Network Settings page.
4: Configuration Using Web-Manager

Automatic IP Address Configuration

An IP address can be assigned automatically. You then enter related network settings.

To assign an IP address automatically:

1. On the main menu, click **Network**.
2. Select **Obtain IP address automatically**.
3. Enter the following (as necessary):

<table>
<thead>
<tr>
<th>BOOTP</th>
<th>Select Enable to permit the Bootstrap Protocol (BOOTP) server to assign the IP address from a pool of addresses automatically. Enable is the default.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP</td>
<td>Select Enable to permit the Dynamic Host Configuration Protocol (DHCP) to assign a leased IP address to the SDS1101 unit automatically. Enable is the default.</td>
</tr>
<tr>
<td>AutoIP</td>
<td>Select Enable to permit the SDS1101 to generate an IP in the 169.254.x.x address range with a Class B subnet. Enable is the default.</td>
</tr>
<tr>
<td>DHCP Host Name</td>
<td>Enter the name of the host on the network providing the IP address.</td>
</tr>
</tbody>
</table>

Note: Disabling BOOTP, DHCP, and AutoIP (all three checkboxes) is not advised as the only available IP assignment method will then be ARP or serial port.

4. When you are finished, click the **OK** button.
5. On the main menu, click **Apply Settings**.

Static IP Address Configuration

You can manually assign an IP address to the unit and enter related network settings.

To assign an IP address manually:

1. On the main menu, click **Network**.
2. Select **Use the following IP configuration**.
3. Enter the following (as necessary):

<table>
<thead>
<tr>
<th>IP Address</th>
<th>If DHCP is not used to assign IP addresses, enter it manually in decimal-dot notation. The IP address must be set to a unique value in the network.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnet Mask</td>
<td>A subnet mask defines the number of bits taken from the IP address that are assigned for the host part.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>The gateway address, or router, allows communication to other LAN segments. The gateway address should be the IP address of the router connected to the same LAN segment as the unit. The gateway address must be within the local network.</td>
</tr>
</tbody>
</table>
4. When you are finished, click the OK button.

5. On the main menu, click **Apply Settings**.

Ethernet Configuration

You must specify the speed and direction of data transmission.

To specify how data will be transmitted:

1. On the main menu, click **Network**.

2. Enter the following (as necessary):

<table>
<thead>
<tr>
<th>Auto Negotiate</th>
<th>With this option, the Ethernet port auto-negotiates the speed and duplex with the hardware endpoint to which it is connected. This is the default.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If this option is not selected, complete the fields that become available:</td>
</tr>
<tr>
<td></td>
<td>◆ Speed: The speed of data transmission. The default setting is 100 Mbps.</td>
</tr>
<tr>
<td></td>
<td>◆ Duplex: The direction of data transmission. The default setting is Full.</td>
</tr>
</tbody>
</table>

3. When you are finished, click the OK button.

4. On the main menu, click **Apply Settings**.

Server Configuration

The unit’s server values display when you select **Server** from the main menu. The following sections describe the configurable parameters on the Server Settings page.
To configure the SDS1101’s device server settings:

1. On the main menu, click **Server**.
2. Configure or modify the following fields:

Server Configuration

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telnet Password</td>
<td>Enter the password required for Telnet access.</td>
</tr>
<tr>
<td>Retype Password</td>
<td>Re-enter the password required for Telnet access.</td>
</tr>
</tbody>
</table>

Advanced

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP Cache Timeout (secs)</td>
<td>When the unit communicates with another device on the network, it adds an entry into its ARP table. ARP Cache timeout defines the number of seconds (1-600) before it refreshes this table.</td>
</tr>
<tr>
<td>TCP Keepalive (secs)</td>
<td>TCP Keepalive time defines how many seconds the unit waits during an inactive connection before checking its status. If the unit does not receive a response, it drops that connection. Enter a value between 0 and 60 seconds. 0 disables keepalive. The default setting is 45.</td>
</tr>
<tr>
<td>Monitor Mode @ Bootup</td>
<td>Select Disable to disable entry into the monitor mode using the yyy or xx1 key sequence at startup. This field prevents the unit from entering monitor mode by interpreting the stream of characters that are received during the device server's initialization at startup. The default setting is Enable.</td>
</tr>
<tr>
<td>HTTP Server Port</td>
<td>This option allows the configuration of the web server port number. The valid range is 1-65535. The default setting is 80.</td>
</tr>
</tbody>
</table>
MTU Size

The Maximum Transmission Unit (MTU) is the largest physical packet size a network can transmit for TCP and UDP. Enter between \(512\) and \(1400\) bytes. The default setting is \(1400\) bytes.

3. When you are finished, click the **OK** button.

4. On the main menu, click **Apply Settings**.

Host List Configuration

The SDS1101 scrolls through the host list until it connects to a device listed in the host list table. After a successful connection, the unit stops trying to connect to any others. If this connection fails, the unit continues to scroll through the table until the next successful connection.

The host list supports a minimum of 1 and a maximum of 12 entries. Each entry contains an IP address and a port number.

Note: The host list is disabled for Manual and Modem Mode. The unit does not accept a data connection from a remote device when the hostlist option is enabled.

To configure the host list:

1. On the main menu, click **Hostlist**.

Figure 4-4. Hostlist Settings

<table>
<thead>
<tr>
<th>No.</th>
<th>Host Address</th>
<th>Port</th>
<th>No.</th>
<th>Host Address</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0.0.0</td>
<td>0</td>
<td>2</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.0.0.0</td>
<td>0</td>
<td>4</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.0.0.0</td>
<td>0</td>
<td>6</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0.0.0.0</td>
<td>0</td>
<td>8</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0.0.0.0</td>
<td>0</td>
<td>10</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0.0.0.0</td>
<td>0</td>
<td>12</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
</tbody>
</table>

2. Enter or modify the following fields:

Retry Settings

<table>
<thead>
<tr>
<th>Retry Counter</th>
<th>Enter the value for the number of times the SDS1101 should attempt to retry connecting to the host list. The default setting is (3).</th>
</tr>
</thead>
</table>
Retry Timeout | Enter the duration (in seconds) the SDS1101 should abandon attempting a connection to the host list. The default setting is 250.
---|---

Host Information

| Host Address | Enter or modify the host’s IP address. |
| Port | Enter the target port number. |

3. When you are finished, click the **OK** button.

4. On the main menu, click **Apply Settings**.

Channel 1 Configuration

The Channel 1 configuration defines how the serial port responds to network and serial communication.

Serial Settings

To configure the channel's serial settings:

1. On the main menu, click **Serial Settings** (under **Channel 1**) to display the Serial Settings window.

2. In the available fields, enter the following information:
Channel 1

| Disable Serial Port | When selected, disables communication through the serial port. The serial port is enabled by default.
Note: This feature is not available on single port device servers. |

Port Settings

Protocol	From the drop-down menu, select the protocol type for the selected channel. The default setting is **RS232**.
Flow Control	Flow control manages data flow between devices in a network to ensure it is processed efficiently. Too much data arriving before a device is prepared to manage it causes lost or retransmitted data. **None** is the default.
Baud Rate	The unit and attached serial device, such as a modem, must agree on a speed or baud rate to use for the serial connection. Valid baud rates are 300, 600, 1200, 2400, 4800, 9600 (default), 19200, 38400, 57600, 115200, and 230400 baud. The default setting is **9600**.
Data Bits	Indicates the number of bits in a transmitted data package. The default setting is **8**.
Parity	Checks for the parity bit. The default setting is **None**.
Stop Bits	The stop bit follows the data and parity bits in serial communication. It indicates the end of transmission. The default setting is **1**.

Pack Control

| Enable Packing | Select to enable packing on the SDS1101.
Two firmware-selectable packing algorithms define how and when packets are sent to the network.
The standard algorithm is optimized for applications in which the unit is used in a local environment, allowing for very small delays for single characters, while keeping the packet count low.
The alternate packing algorithm minimizes the packet count on the network and is especially useful in applications in a routed Wide Area Network (WAN). Adjusting parameters in this mode can economize the network data stream.
Disabled by default. |
| Idle Gap Time | Select the maximum time for inactivity. The default time is **12 milliseconds**. |
| Match 2 Byte Sequence | Use to indicate the end of a series of data to be sent as one group. The sequence must occur sequentially to indicate end of the data collection to the SDS1101. The default setting is **No**. |
Match Bytes
Use to indicate the end of a series of data to be sent as one group. Set this value to **00** if specific functions are not needed.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send Frame Only</td>
<td>After the detection of the byte sequence, indicates whether to send the data frame or the entire buffer. Select Yes to send only the data frame. The default setting is No.</td>
</tr>
<tr>
<td>Send Trailing Bytes</td>
<td>Select the number of bytes to send after the end-of-sequence characters. The default setting is None.</td>
</tr>
</tbody>
</table>

Flush Input Buffer (Serial to Network)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Active Connect</td>
<td>Select Yes to clear the input buffer with a connection that is initiated from the device to the network. The default setting is No.</td>
</tr>
<tr>
<td>With Passive Connect</td>
<td>Select Yes to clear the input buffer with a connection initiated from the network to the device. The default setting is No.</td>
</tr>
<tr>
<td>At Time of Disconnect</td>
<td>Select Yes to clear the input buffer when the network connection to or from the device is disconnected. The default setting is No.</td>
</tr>
</tbody>
</table>

Flush Output Buffer (Network to Serial)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Active Connect</td>
<td>Select Yes to clear the output buffer with a connection that is initiated from the device to the network. The default setting is No.</td>
</tr>
<tr>
<td>With Passive Connect</td>
<td>Select Yes to clear the output buffer with a connection initiated from the network to the device. The default setting is No.</td>
</tr>
<tr>
<td>At Time of Disconnect</td>
<td>Select Yes to clear the output buffer when the network connection to or from the device is disconnected. The default setting is No.</td>
</tr>
</tbody>
</table>

3. When you are finished, click the **OK** button.

4. On the main menu, click **Apply Settings**.

Connection Settings - TCP

To configure a channel's TCP settings:

1. On the main menu, click **Connection**. The Connection Settings window for the channel displays.
2. In the available fields, enter or modify the following information:

Connect Protocol

| Protocol | From the drop-down menu, select TCP. |

Connect Mode: Passive Connection

Accept Incoming	Select Yes to accept incoming connections. The default setting is Yes.
Password Required	Determines whether a password is required for an incoming passive connection. This field is not available when a password is set for Telnet mode. The default setting is No.
Password	If Password Required was set to Yes, enter the password for passive connections.

Connect Mode: Active Connection

| Active Connect | Select None (default) to disable Active Connect. Otherwise, indicate the connection type from the drop-down list: |
| ✦ With Any Character: Attempts to connect when any
4: Configuration Using Web-Manager

A character is received from the serial port.

- **With Active Mdm Ctrl In**: Accepts external connection requests only when the `modem_control_in` input is asserted.
- **With Start Character**: Attempts to connect when it receives a specific start character from the serial port. The default start character is carriage return.
- **Manual Connection**: Attempts to connect when directed by a command string received from the serial port.
- **Auto Start**: Automatically connects to the remote IP address and port after booting up.

<table>
<thead>
<tr>
<th>Start Character</th>
<th>If Active Connect is set to With Start Character, enter the start character in this field. The default setting is 0D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modem Mode</td>
<td>Indicates the on-screen response type when in Modem Mode (if Modem Mode is enabled). The default setting is None.</td>
</tr>
</tbody>
</table>

Endpoint Configuration

<table>
<thead>
<tr>
<th>Local Port</th>
<th>Enter the local port number.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto increment for active connect</td>
<td>Select to auto-increment the local port number for new outgoing connections. The range of auto-incremented port numbers is 50,000 to 59,999 and loops back to the beginning when the maximum range is reached. Disabled by default.</td>
</tr>
<tr>
<td>Remote Port</td>
<td>Enter the remote port number.</td>
</tr>
<tr>
<td>Remote Host</td>
<td>Enter the IP address of the remote device.</td>
</tr>
</tbody>
</table>

Common Options

<table>
<thead>
<tr>
<th>Telnet Mode</th>
<th>This field is available for configuration only when Active Connect is set to None. Select Enable to permit Telnet communication to the SDS1101 unit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Name</td>
<td>This field is available for configuration only when Telnet Mode is set to Enable. Use the terminal name for the Telnet terminal type. Enter only one name. When this option is enabled, the unit also reacts to the end of record (EOR) and binary options, which can be used for applications such as terminal emulation to IBM hosts.</td>
</tr>
<tr>
<td>Connect Response</td>
<td>A single character is transmitted to the serial port when there is a change in connection state. The default setting is None.</td>
</tr>
</tbody>
</table>
Use Hostlist

If this option is set to **True**, the device server scrolls through the host list until it connects to a device listed in the host list table. Once it connects, the unit stops trying to connect to any others. If this connection fails, the unit continues to scroll through the table until it connects to another IP in the host list.

The host list is disabled for Manual Mode and for Modem Mode. The unit will not accept a data connection from a remote device when the host list option is enabled.

LED

Select **Blink** for the status LEDs to blink upon connection or **None** for no LED output. The default setting is **Blink**.

Disconnect Mode

<table>
<thead>
<tr>
<th>On Mdm_Ctrl_In Drop</th>
<th>Set to Yes for the network connection to or from the serial port to drop when <code>modem_control_in</code> (DSR) transitions from a high state to a low state. The default setting is No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Disconnect</td>
<td>When set to Yes, the TCP connection closes even if the remote site does not acknowledge the disconnect request.</td>
</tr>
<tr>
<td>With EOT</td>
<td>Select Yes to drop the connection when Ctrl-D or Hex 04 is detected. Both Telnet Mode and Disconnect with EOT must be enabled for Disconnect with EOT to function properly. Ctrl+D is only detected going from the serial port to the network. The default setting is No.</td>
</tr>
<tr>
<td>Inactivity Timeout</td>
<td>Use this parameter to set an inactivity timeout. The unit drops the connection if there is no activity on the serial line before the set time expires. Enter time in the format mm:ss, where m is the number of minutes and s is the number of seconds. To disable the inactivity timeout, enter 00:00.</td>
</tr>
</tbody>
</table>

3. When you are finished, click the **OK** button.

4. On the main menu, click **Apply Settings**.

Connection Settings - UDP

To configure a channel's UDP settings:

1. On the main menu, click **Connection**. The Connection Settings window for the selected channel displays.

2. In the available fields, enter or modify the following information:
Figure 4-7. UDP Connection Settings

Connect Protocol

Protocol: Select UDP from the drop-down menu.

Datagram Mode

Datagram Type: Configures the remote IP or network broadcast address and the remote port. Enter 01 for directed or broadcast UDP. The default setting is 00.

Accept Incoming: Select Yes to accept incoming UDP datagrams. The default setting is Yes.

Endpoint Configuration

Local Port: Enter the local port number.

Remote Port: Enter the port number of the remote device.

Remote Host: Enter the IP address of the remote device.
Device Address Table

<table>
<thead>
<tr>
<th>Device Address Table</th>
<th>The table is enabled when Datagram Type is set to FD. Enter values between 1 and 255 to identify units on the local network of device servers.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Note: Lantronix Tech Support supports Datagram type 01. Datagram Type FD is for OEM use.</td>
</tr>
</tbody>
</table>

3. When you are finished, click the **OK** button.

4. On the main menu, click **Apply Settings**.

Apply Settings

1. To save and apply the configuration changes to the device server, click the **Apply Settings** button.

 Note: Clicking **OK** on each page does not change the configuration on the device. **OK** tells the SDS1101 what changes to use; **Apply Settings** makes the changes permanent and reboots the SDS1101.

Apply Factory Defaults

1. Click the **Apply Defaults** button to set the device server back to the default settings.

2. Click **Yes** to set factory settings, or click **No** to cancel.
5: Configuration via Telnet or Serial Port (Setup Mode)

You must configure the unit so it can communicate on a network with your serial device. As an alternative to using a web browser, as described in the previous chapter, you can use the following procedures remotely or locally:

- Use a Telnet connection to configure the unit over the network.
- Use a terminal or terminal emulation program to access the serial port locally.

The series of prompts at which you enter configuration settings is called Setup Mode.

Note: Detailed information about other setup methods is available from your Lantronix Sales Associate.

The unit’s configuration is stored in nonvolatile memory and is retained without power. You can change the configuration at any time. The unit performs a reset after the configuration has been changed and stored.

This chapter tells you how to access Setup Mode and the general procedure for using it. To complete the configuration, continue with 6: Setup Mode: Server Configuration, 7: Setup Mode: Channel Configuration, and 8: Setup Mode: Advanced Settings.

Note: The menus in the configuration chapters show a typical device. Your device may have different configuration options.

Accessing Setup Mode

Telnet Connection

To configure the unit over the network, establish a Telnet connection to port 9999.

Note: You can also use DeviceInstaller to access Telnet. Select the device from the main window list, and click the Telnet Configuration tab. Skip steps 1 and 2.

To establish a Telnet connection:

1. From the Windows Start menu, click Run and type the following command, where x.x.x.x is the IP address, and 9999 is the unit’s fixed network configuration port number:

 Windows: telnet x.x.x.x 9999
 UNIX: telnet x.x.x.x 9999

2. Click OK. The following information displays.
3. To enter Setup Mode, press `Enter` within 5 seconds. The configuration settings display, followed by the Change Setup menu.

4. Select an option on the menu by entering the number of the option in the Your choice? field and pressing `Enter`.

5. To enter a value for a parameter, type the value and press `Enter`, or to confirm a current value, just press `Enter`.

6. When you are finished, save the new configuration (option 9). The unit reboots.

Serial Port Connection

To configure the unit through a serial connection:

1. Connect a console terminal or PC running a terminal emulation program to your unit's serial port. The default serial port settings are 9600 baud, 8 bits, no parity, 1-stop bit, no-flow control.

2. Reset the SDS1101 unit by cycling the unit's power (turning the power off and back on). Immediately upon resetting the device, enter three lowercase x characters (xxx).

 Note: The easiest way to enter Setup Mode is to hold down the x key at the terminal (or emulation) while resetting the unit. You must do this within three seconds of resetting the SDS1101.

 At this point, the screen display is the same as when you use a Telnet connection. To continue, go to step 3 in Telnet Connection, above.

Exiting Setup Mode

To exit setup mode, use one of the following two options:

- To save all changes and reboot the device, select option 9 Save and exit from the Change Setup menu. All values are stored in nonvolatile memory.

- To exit the configuration mode without saving any changes or rebooting, select option 8 Exit without save from the Change Setup menu.
6: Setup Mode: Server Configuration

This chapter explains how to configure the network settings.

Note: Current values display in parentheses.

Server Configuration (Option 0)

The unit’s basic network parameters display when you select Server configuration (option 0). The **IP Address**, **Set Gateway IP Address**, and **Netmask** fields display the current values.

<table>
<thead>
<tr>
<th>Figure 6-1. Network Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address : (000) (000) (000) (000)</td>
</tr>
<tr>
<td>Set Gateway IP Address (N)</td>
</tr>
<tr>
<td>Netmask: Number of Bits for Host Part (0=default) (0)</td>
</tr>
<tr>
<td>Change telnet config password (N)</td>
</tr>
</tbody>
</table>

IP Address

If DHCP is not used to assign IP addresses, enter the IP address manually. The IP address must be set to a unique value in the network. Enter each octet and press Enter between each section. The current value displays in parentheses.

```
IP Address : (000) (000) (000) (000)
```

If DHCP is used, the third octet of the IP address sets the BootP/DHCP/AutoIP options. The following table shows the bits you can manually configure to force the SDS1101 to disable AutoIP, DHCP, or BootP. To disable an option, set the appropriate bit.

<table>
<thead>
<tr>
<th>Table 6-1. BootP/DHCP/AutoIP options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>AutoIP</td>
</tr>
<tr>
<td>DHCP</td>
</tr>
<tr>
<td>BootP</td>
</tr>
</tbody>
</table>

For example, if the third octet is 0.0.5.0, the AutoIP and BootP options are disabled; only DHCP is enabled. (The value 5 results from adding the binary equivalents of 0 and 2.) This is the most common setting when using DHCP.

Set Gateway IP Address

The gateway address, or router, allows communication to other LAN segments. The gateway address should be the IP address of the router connected to the same LAN segment as the unit. The gateway address must be within the local network. The
default setting is **N** (No), meaning the gateway address has not been set. To set the gateway address, type **Y** and enter the address.

```
Set Gateway IP Address (N) ? Y
Gateway IP addr (000) (000) (000) (000)
```

Netmask: Number of Bits for Host Part

A netmask defines the number of bits taken from the IP address that are assigned for the host part.

```
Netmask: Number of Bits for Host Part (0=default) (0)
```

Note: Class A: 24 bits; Class B: 16 bits; Class C: 8 bits

The unit prompts for the number of host bits to be entered, then calculates the netmask, which appears in standard decimal-dot notation (for example, 255.255.255.0) when the saved parameters display. The default setting is 0.

<table>
<thead>
<tr>
<th>Network Class</th>
<th>Host Bits</th>
<th>Netmask</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>24</td>
<td>255.0.0.0</td>
</tr>
<tr>
<td>B</td>
<td>16</td>
<td>255.255.0.0</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>255.255.255.0</td>
</tr>
</tbody>
</table>

Change Telnet Configuration Password

Setting the Telnet configuration password prevents unauthorized access to the setup menu through a Telnet connection to port 9999 or through web pages. The password must have 4 characters. The default setting is **N** (No).

```
Change telnet config password (N) ?
```

An enhanced password setting (for Telnet access only) of 16 characters is available under *Security Settings (Option 6)* on page 57.

Note: You do not need a password to access the Setup Mode window by a serial connection.

DHCP Name

If a DHCP server has automatically assigned the IP address and network settings, you can discover the unit by using the DeviceInstaller network search feature or Monitor Mode (see 10: *Monitor Mode*).

Note: When you enter Monitor Mode from the serial port with network connection enabled and issue the **NC** (Network Communication) command, you see the unit's IP configuration.
There are three methods for assigning DHCP names to the unit.

- **Default DHCP Name**: If you do not change the DHCP name, and you are using an IP of 0.0.0.0, then the DHCP name defaults to XX.XX.XX.XX (XXXXXX is the last 6 digits of the MAC address shown on the label on the bottom/side of the unit). For example, if the MAC address is 00-20-4A-12-34-56, then the default DHCP name is C123456.

- **Custom DHCP Name**: You can create your own DHCP name. If you are using an IP address of 0.0.0.0, then the last option in Server configuration is **Change DHCP device name**. This option allows you to change the DHCP name to an alphanumeric name (LTX in our example).


  ```
  Change DHCP device name (not set) ? (N) Y
  Enter new DHCP device name : LTX
  ```

- **Numeric DHCP Name**: You can change the DHCP name by specifying the last octet of the IP address. When you use this method, the DHCP name is LTXYY where YY is what you chose for the last octet of the IP address. If the IP address you specify is 0.0.0.12, then the DHCP name is LTX12. This method only works with 2 digit numbers (01-99).
7: Setup Mode: Channel Configuration

This chapter explains how to configure the serial port.

Notes:

- Current values display in parenthesis.
- You must enter some values in hexadecimal notation. (See B: Binary to Hexadecimal Conversions.)

Channel 1 (Option 1)

Select Channel 1 (option 1) from the Change Setup menu to define how the serial port responds to network and serial communications. The following sections describe the configurable parameters within the Channel configuration menu.

Figure 7-1. Serial Port Settings

<table>
<thead>
<tr>
<th>Baudrate (9600) ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/F Mode (4C) ?</td>
</tr>
<tr>
<td>Flow (00) ?</td>
</tr>
<tr>
<td>Port No (10001) ?</td>
</tr>
<tr>
<td>ConnectMode (C0) ?</td>
</tr>
<tr>
<td>Send ‘+++’ in Modem Mode (Y) ?</td>
</tr>
<tr>
<td>Auto increment source port (N) ?</td>
</tr>
<tr>
<td>Remote IP Address : (000) . (000) . (000) . (000)</td>
</tr>
<tr>
<td>Remote Port (0) ?</td>
</tr>
<tr>
<td>DiscConnMode (00) ?</td>
</tr>
<tr>
<td>FlushMode (00) ?</td>
</tr>
<tr>
<td>DiscConnTime (00:00) ?</td>
</tr>
<tr>
<td>SendChar 1 (00) ?</td>
</tr>
<tr>
<td>SendChar 2 (00) ?</td>
</tr>
</tbody>
</table>

Baudrate

The unit and attached serial device, such as a modem, must agree on a speed or baud rate to use for the serial connection. Valid baud rates are 300, 600, 1200, 2400, 4800, 9600 (default), 19200, 38400, 57600, 115200, and 230400 baud.

Baudrate (9600) ?
I/F (Interface) Mode

The Interface (I/F) Mode is a bit-coded byte entered in hexadecimal notation. The default setting is 4C.

Figure 7-2. Interface Mode

The following table displays available I/F Mode options:

Note: All bit positions in the table that are blank represent “don’t care” bits for that particular option, which can be set to either a 0 or 1 value.

<table>
<thead>
<tr>
<th>I/F Mode Option</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232C (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RS-422/485 4-wire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RS-485 2-wire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7 Bit</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No Parity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Even Parity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Odd Parity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 stop bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 stop bits (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

(1) 2 stop bits are implemented by the software. This might influence performance.

The following table demonstrates how to build some common Interface Mode settings:

<table>
<thead>
<tr>
<th>Common I/F Mode Setting</th>
<th>Binary</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232C, 8-bit, No Parity, 1 stop bit</td>
<td>0100 1100</td>
<td>4C</td>
</tr>
<tr>
<td>RS-232C, 7-bit, Even Parity, 1 stop bit</td>
<td>0111 1000</td>
<td>78</td>
</tr>
<tr>
<td>RS-485 2-wire, 8-bit, No Parity, 1 stop bit</td>
<td>0100 1111</td>
<td>4F</td>
</tr>
<tr>
<td>RS-422, 8-bit, Odd Parity, 1 stop bit</td>
<td>0101 1101</td>
<td>5D</td>
</tr>
</tbody>
</table>

Flow

Flow control sets the local handshaking method for stopping serial input/output. The default setting is 00.

Flow (00)
Use the following table to select flow control options:

<table>
<thead>
<tr>
<th>Flow Control Option</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>No flow control</td>
<td>00</td>
</tr>
<tr>
<td>XON/XOFF flow control</td>
<td>01</td>
</tr>
<tr>
<td>Hardware handshake with RTS/CTS lines</td>
<td>02</td>
</tr>
<tr>
<td>XON/XOFF pass characters to host</td>
<td>05</td>
</tr>
</tbody>
</table>

Port Number

The setting represents the source port number in TCP connections. It is the number that identifies the channel for remote initiating connections.

```
Port No (10001) ? _
```

The default setting for Port 1 is **10001**. The range is **1-65535**, except for the following reserved port numbers:

Table 7-4. Reserved Port Numbers

<table>
<thead>
<tr>
<th>Port Numbers</th>
<th>Reserved for</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 1024</td>
<td>Reserved (well known ports)</td>
</tr>
<tr>
<td>9999</td>
<td>Telnet setup</td>
</tr>
<tr>
<td>14000-14009</td>
<td>Reserved for Redirector</td>
</tr>
<tr>
<td>30704</td>
<td>Reserved (77F0h)</td>
</tr>
<tr>
<td>30718</td>
<td>Reserved (77FEh)</td>
</tr>
</tbody>
</table>

Warning: We recommend that you not use the reserved port numbers for this setting as incorrect operation may result.

Use Port 0 for the outgoing local port to change with each connection. The port range is **50,000-59,999**. Each subsequent connection increments the number by 1 (it wraps back around to 50,000).

Only use this automatic port increment feature to initiate a connection using TCP. Set the port to a non-zero value when the unit is in a passive mode or when using UDP instead of TCP.

Connect Mode

Connect Mode defines how the unit makes a connection, and how it reacts to incoming connections over the network.

```
ConnectMode (C0) ? _
```

Enter Connect Mode options in hexadecimal notation. The default setting is **C0**.

Note: All bit positions in the table that are blank represent “don’t care” bits for that particular option, which can be set to either a 0 or 1 value.
Table 7-5. Connect Mode Options

<table>
<thead>
<tr>
<th>Connect Mode Option</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Incoming Connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never accept incoming</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accept with DTR Active</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Always Accept</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nothing (quiet)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Character response (C=connect, D=disconnect, N=unreachable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>c) Active Startup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No active startup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>With any character</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>With DTR Active</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>With a specific start character</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Manual connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Autostart</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hostlist</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>d) Datagram Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directed UDP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>e) Modem Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Echo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Data Echo & Modem Response (Numeric)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Data Echo & Modem Response (Verbose)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Modem Response Only (Numeric)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Modem Response Only (Verbose)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

a) Incoming Connection

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never Accept Incoming</td>
<td>Rejects all external connection attempts.</td>
</tr>
<tr>
<td>Accept with DTR Active</td>
<td>Accepts external connection requests only when the DTR input is asserted. Cannot be used with Modem Mode.</td>
</tr>
<tr>
<td>Always Accept</td>
<td>Accepts any incoming connection when a connection is not already established. Default setting.</td>
</tr>
</tbody>
</table>
b) Response

| Character Response | A single character is transmitted to the serial port when there is a change in connection state: C = connected, D = disconnected, N = host unreachable. This option is overridden when the Active Start Modem Mode or Active Start Host List is in effect. Default setting is Nothing (quiet). |

c) Active Startup

<table>
<thead>
<tr>
<th>No Active Startup</th>
<th>Does not attempt to initiate a connection under any circumstance. Default setting.</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Any Character</td>
<td>Attempts to connect when any character is received from the serial port.</td>
</tr>
<tr>
<td>With DTR Active</td>
<td>Attempts to connect when the DTR input changes from not asserted to asserted.</td>
</tr>
<tr>
<td>With a Specific Start Character</td>
<td>Attempts to connect when it receives a specific start character from the serial port. The default start character is carriage return.</td>
</tr>
<tr>
<td>Manual Connection</td>
<td>Attempts to connect when directed by a command string received from the serial port. The first character of the command string must be a C (ASCII 0x43), and the last character must be either a carriage return (ASCII 0x0D) or a line feed (0x0A). No blanks or space characters may be in the command string. Between the first and last command string characters must be a full or partial destination IP address and may be a destination port number. The IP address must be in standard decimal-dot notation and may be a partial address, representing the least significant 1, 2, or 3 bytes of the remote IP address. The period is required between each pair of IP address numbers. If present, the port number must follow the IP address, must be presented as a decimal number in the range 1-65535, and must be preceded by a forward slash (ASCII 0x2F). The slash separates the IP address and the port number. If you omit the port number from a command string, the internally stored remote port number starts a connection. If a partial IP address is presented in a command string, it is interpreted to be the least significant bytes of the IP address and uses the internally stored remote IP address to provide the most significant bytes of the IP address. If the IP address entered is 0.0.0.0/0, the device server enters Monitor Mode. For example, if the remote IP address already configured in the unit is 129.1.2.3, then an example command string would be C3/7. (This would connect to 129.1.2.3 and port 7.) You may also use a different ending for the connection string. For example, C50.1/23 would connect you to 129.1.50.1 and port 23.</td>
</tr>
</tbody>
</table>
Figure 7-3. Manual Connection Address Example

<table>
<thead>
<tr>
<th>Command String</th>
<th>Result if remote IP is 129.1.2.3 and remote port is 1234</th>
</tr>
</thead>
<tbody>
<tr>
<td>C121.2.4.5/1</td>
<td>Complete override; connection is started with host 121.2.4.5, port 1.</td>
</tr>
<tr>
<td>C5</td>
<td>Connects to 129.1.2.5, port 1234.</td>
</tr>
<tr>
<td>C28.10/12</td>
<td>Connects to 129.1.28.10, port 12.</td>
</tr>
<tr>
<td>C0.0.0.0/0</td>
<td>Enters Monitor Mode.</td>
</tr>
</tbody>
</table>

Autostart (Automatic Connection)

If you enable Autostart, the unit automatically connects to the remote IP address and remote port specified when the firmware starts.

Hostlist

If you enable this option, the device server scrolls through the hostlist until it connects to a device listed in the hostlist table. Once it connects, the unit stops trying to connect to any others. If this connection fails, the unit continues to scroll through the table until it is able to connect to another IP in the hostlist.

Hostlist supports a minimum of 1 and a maximum of 12 entries. Each entry contains the IP address and the port number.

The hostlist is disabled for Manual and Modem Modes. The unit does not accept a data connection from a remote device when the hostlist option is enabled.

Figure 4-7. Hostlist Option

```
Baudrate <9600> ?
I/F Mode <4C> ?
Flow <00> ?
Port No <10001> ?
Connect Mode <25> ?
Send ’+++’ in Modem Mode <Y> ?
Auto Increment source port <N> ?

Hostlist:
01. IP : 172.019.000.001 Port : 00023
02. IP : 172.019.000.002 Port : 03001
03. IP : 172.019.000.003 Port : 10001

Change Hostlist ? <N> ? Y
01. IP address : <172> .<019> .<000> .<001> Port : <23> ?
02. IP address : <172> .<019> .<000> .<002> Port : <20001> ?
03. IP address : <172> .<019> .<000> .<003> Port : <10001> ?
04. IP address : <000> .<000> .<000> .<000> Port : <000> ?

Hostlist:
01. IP : 172.019.000.001 Port : 00023
02. IP : 172.019.000.002 Port : 03001
03. IP : 172.019.000.003 Port : 10001

Change Hostlist ? <N> ? Y
Hostlist Retrycounter <3> ?
Hostlist Retransmit <25> ?
Disconnected <00> ?
Flashmode <00> ?
DisconnectedTime <00:000> ?
SendChar1 <00> ?
SendChar2 <00> ?
```
To enable the hostlist:

1. Enter a **Connect Mode** of 0x20 (2X), where X is any digit. The menu shows you a list of current entries already defined in the product.

2. To delete, modify, or add an entry, select **Yes**. If you enter an IP address of 0.0.0.0, that entry and all others after it are deleted.

3. After completing the hostlist, repeat the previous step if necessary to edit the hostlist again.

4. For **Retrycounter**, enter the number of times the Lantronix unit should try to make a good network connection to a hostlist entry that it has successfully ARPed. The range is 1-15, with the default set to 3.

5. For **Retrytimeout**, enter the number of seconds the unit should wait before failing an attempted connection. The time is stored as units of milliseconds in the range of 1-65535. The default setting is 250.

d) **Datagram Type**

<table>
<thead>
<tr>
<th>Datagram Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directed UDP</td>
<td>When selecting this option, you are prompted for the Datagram type. Enter 01 for directed or broadcast UDP. When the UDP option is in effect, the unit never attempts to initiate a TCP connection because it uses UDP datagrams to send and receive data.</td>
</tr>
</tbody>
</table>

e) **Modem Mode**

In Modem (Emulation) Mode, the unit presents a modem interface to the attached serial device. It accepts AT-style modem commands and handles the modem signals correctly.

Normally, there is a modem connected to a local PC and a modem connected to a remote machine. A user must dial from the local PC to the remote machine, accumulating phone charges for each connection. Modem Mode allows you to replace modems with SDS1101s, and to use an Ethernet connection instead of a phone call. By not having to change communications applications, you avoid potentially expensive phone calls.

To select Modem Mode, set the Connect Mode to **C6** (no echo), **D6** (echo with full verbose), **D7** (echo with numeric response), **CF** (modem responses only, numeric response), or **CE** (modem responses only, full verbose).

*Note: If the unit is in Modem Mode, and the serial port is idle, the unit can still accept network TCP connections to the serial port if Connect Mode is set to **C6** (no echo), **D6** (echo with full verbose), **D7** (echo with numeric response), **CF** (modem responses only, numeric response), or **CE** (modem responses only, full verbose).*

<table>
<thead>
<tr>
<th>Without Echo</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Modem Mode, echo refers to the echo of all of the characters entered in command mode; it does not mean to echo data that is transferred. Quiet Mode (without echo) refers to the modem not sending an answer to the commands received (or displaying what was typed).</td>
<td></td>
</tr>
</tbody>
</table>
Data Echo & Modem Response

Full Verbose: The unit echoes modem commands and responds to a command with a message string shown in the table below.

Numeric Response: The unit echoes modem commands and responds to a command with a numeric response.

Modem Responses Only

Full Verbose: The unit does not echo modem commands and responds to a command with a message string shown in the table below.

Numeric Response: The unit does not echo modem commands and responds to a command with a numeric response.

<table>
<thead>
<tr>
<th>Message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Verbose</td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Command was executed without error.</td>
</tr>
<tr>
<td>CONNECT</td>
<td>A network connection has been established.</td>
</tr>
<tr>
<td>NO CARRIER</td>
<td>A network connection has been closed.</td>
</tr>
<tr>
<td>RING n.n.n.n.</td>
<td>A remote device, having IP address n.n.n.n, is connecting to this device.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numeric Response</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>1</td>
<td>Connected</td>
</tr>
<tr>
<td>2</td>
<td>Ring</td>
</tr>
<tr>
<td>3</td>
<td>No Carrier</td>
</tr>
<tr>
<td>4</td>
<td>Error</td>
</tr>
</tbody>
</table>

Received commands must begin with the two-character sequence `AT` and be terminated with a carriage return character.

The unit ignores any character sequence received *not* starting with `AT`, and only recognizes and processes single `AT`-style commands. The unit treats compound `AT` commands as unrecognized commands.

If the **Full Verbose** option is in effect, the unit responds to an unrecognized command string that is otherwise formatted correctly (begins with `AT` and ends with carriage return) with the "OK" message and takes no further action.

If the **Numeric Response** option is in effect, the unit responds to an unrecognized command string that is otherwise formatted correctly with a "0" message and takes no further action.

When an active connection is in effect, the unit transfers data and does not process commands received from the serial interface.

When a connection is terminated or lost, the unit reverts to command mode.
When an active connection is in effect, the unit terminates the connection if it receives the following sequence from the attached serial device:

- No serial data is received for one second.
- The character sequence +++ is received, with no more than one second between each two characters.
- No serial data is received for one second after the last + character. At this time, the unit responds affirmatively per the selected echo/response mode.
- The character string ATH is received, terminated with a carriage return. The unit responds affirmatively according to the selected echo/response mode and drops the network connection. The serial interface reverts to accepting command strings.

If this sequence is not followed, the unit remains in data transfer mode.

Table 7-6. Modem Mode Commands

<table>
<thead>
<tr>
<th>Modem Mode Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATDTx.x.x,pppp or ATDTx.x.x/pppp</td>
<td>Makes a connection to an IP address (x.x.x.x) and a remote port number (pppp).</td>
</tr>
<tr>
<td>ATDTx.x.x</td>
<td>Makes a connection to an IP address (x.x.x.x) and the remote port number defined within the unit.</td>
</tr>
<tr>
<td>ATD0.0.0.0</td>
<td>Forces the unit into Monitor Mode if a remote IP address and port number are defined within the unit.</td>
</tr>
<tr>
<td>ATD</td>
<td>Forces the unit into Monitor Mode if a remote IP address and port number are not defined within the unit.</td>
</tr>
<tr>
<td>ATDx.x.x.x</td>
<td>Makes a connection to an IP address (x.x.x.x) and the remote port number defined within the unit.</td>
</tr>
<tr>
<td>ATH</td>
<td>Hangs up the connection (Entered as +++ATH).</td>
</tr>
<tr>
<td>ATS0=n</td>
<td>Enables or disables connections from the network going to the serial port. n=0 disables the ability to make a connection from the network to the serial port. n=1-9 enables the ability to make a connection from the network to the serial port. n>1-9 is invalid.</td>
</tr>
<tr>
<td>ATEn</td>
<td>Enables or disables character echo and responses. n=0 disables character echo and responses. n=1 enables character echo and responses.</td>
</tr>
<tr>
<td>ATVn</td>
<td>Enables numeric response or full verbose. n=0 enables numeric response. n=1 enables full verbose.</td>
</tr>
</tbody>
</table>

Note: The unit recognizes these AT commands as single commands such as ATE0 or ATV1; it does not recognize compound commands such as ATE0V.
Send the Escape Sequence (+++) in Modem Mode

Send ‘+++’ in Modem Mode (Y) ? _

Disable or enable the SDS1101’s ability to send the escape sequence. The default setting is Y (Yes) (send the escape sequence).

Auto Increment Source Port

Auto increment source port (N) ? _

Y (Yes) auto increment the source port. The SDS1101 increments the port number used with each new connection.

Remote IP Address

This is the destination IP address used with an outgoing connection.

Remote IP Address : (000) (000) (000) (000)

Note: This option does not display when Hostlist is enabled from the ConnectMode prompt (see Connect Mode on page 43 for more information).

Remote Port

You must set the remote TCP port number for the unit to make outgoing connections. This parameter defines the port number on the target host to which a connection is attempted.

Remote Port (0) ? _

To connect an ASCII terminal to a host using the unit for login purposes, use the remote port number 23 (Internet standard port number for Telnet services).

Note: This option does not display when Hostlist is enabled from the ConnectMode prompt (see Connect Mode on page 43 for more information).

DisConnMode

This setting determines the conditions under which the unit will cause a network connection to terminate. The default setting is 00.

DisConnMode (00) ? _

Notes:

- In DisConnMode (Disconnect Mode), DTR drop either drops the connection or is ignored.
- All bit positions in the table that are blank represent “don’t care” bits for that particular option, which can be set to either a 0 or 1 value.
Table 7-7. Disconnect Mode Options

<table>
<thead>
<tr>
<th>Disconnect Mode Option</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disconnect with DTR drop (6)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ignore DTR</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telnet mode and terminal type setup (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Channel (port) password (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hard disconnect (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disable hard disconnect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>State LED off with connection (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Disconnect with EOT (^D) (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1. The SDS sends the "Terminal Type" upon an outgoing connection.
2. A password is required for a connection to the serial port from the network.
3. The TCP connection closes even if the remote site does not acknowledge the disconnection.
4. When there is a network connection to or from the serial port, the state LED turns off instead of blinking.
5. When Ctrl+D or Hex 04 is detected, the connection is dropped. Both Telnet Mode and Disconnect with EOT must be enabled for Disconnect with EOT to function properly. Ctrl+D is only detected going from the serial port to the network.
6. When DTR transitions from a high state to a low state, the network connection to or from the serial port drops.

Flush Mode (Buffer Flushing)

Using this parameter, you can control line handling and network buffers with connection startup and disconnect. The default setting is 00.

FlushMode (00) ? _

You can also select between two different packing algorithms.

Note: All bit positions in the table that are blank represent “don’t care” bits for that particular option, which can be set to either a 0 or 1 value.
Table 7-8. Flush Mode Options

<table>
<thead>
<tr>
<th>Function</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Buffer (Serial to Network)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear with a connection initiated from the device to the network</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear with a connection initiated from the network to the device</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear when the network connection to or from the device is disconnected</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Buffer (Network to Serial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear with a connection initiated from the device to the network</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear with a connection initiated from the network to the device</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear when the network connection to or from the device is disconnected</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate Packing Algorithm (Pack Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pack Control

The packing algorithms define how and when packets are sent to the network. The standard algorithm is optimized for applications in which the unit is used in a local environment, allowing for very small delays for single characters, while keeping the packet count low. The alternate packing algorithm minimizes the packet count on the network and is especially useful in applications in a routed Wide Area Network (WAN). Adjusting parameters in this mode can economize the network data stream.

Pack control settings are enabled in Flush Mode. Set this value to 00 if you do not need specific functions.

Note: All bit positions in the table that are blank represent "don't care" bits for that particular option, which can be set to either a 0 or 1 value.

Table 7-9. Pack Control Options

<table>
<thead>
<tr>
<th>Option</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packing Interval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval: 12 msec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval: 52 msec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval: 250 msec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval: 5 sec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trailing Characters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Send Characters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Byte Send Character Sequence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
7: Setup Mode: Channel Configuration

<table>
<thead>
<tr>
<th>Option</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send Immediately After Send chars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Packing Interval

Packing Interval defines how long the unit should wait before sending accumulated characters. This wait period is between successive network segments containing data. For alternate packing, the default interval is **12 ms**.

Trailing Characters

In some applications, CRC, Checksum, or other trailing characters follow the end-of-sequence character; this option helps to adapt frame transmission to the frame boundary. The default setting is **00** (none).

Send Characters

- If **2-Byte Send Character Sequence** is enabled, the unit interprets the sendchars as a 2-byte sequence; if this option is not enabled, the unit interprets them independently. The default setting is **0** (disabled).
- If **Send Immediately After Characters** is not set, any characters already in the serial buffer are included in the transmission after a "transmit" condition is found. If this option is set, the unit sends immediately after recognizing the transmit condition (sendchar or timeout). The default setting is **0**.

Note: A transmission might occur if status information needs to be exchanged or an acknowledgment needs to be sent.

DisConnTime (Inactivity Timeout)

Use this parameter to set an inactivity timeout. The unit drops the connection if there is no activity on the serial line before the set time expires. Enter time in the format mm:ss, where m is the number of minutes and s is the number of seconds.

DisConnTime (00:00) ?:

To disable the inactivity timeout, enter **00:00**. Range is 0 (disabled) to 5999 seconds (99 minutes, 59 seconds). Default setting is **0**.

Send Characters

Enter up to two characters in hexadecimal representation in sendchar.

```
SendChar 1 (00) ? _
SendChar 2 (00) ? _
```

If the unit receives a character on the serial line that matches one of these characters, it sends the character immediately, along with any awaiting characters, to the TCP connection. This action minimizes the response time for specific protocol characters on the serial line (for example, ETX, EOT). Setting the first sendchar to **00** disables the recognition of the characters. Alternatively, the unit can interpret two characters as a sequence (see **Pack Control** on page 52). The default setting is **00**.
Telnet Terminal Type

This parameter displays only if you enabled the terminal type option in Disconnect Mode. With this option enabled, you can use the terminal name for the Telnet terminal type. Enter only one name.

With terminal type option enabled, the unit also reacts to the EOR (end of record) and binary options, useful for applications like terminal emulation to IBM hosts.

Channel (Port) Password

This parameter appears only if the channel (port) password option is enabled in Disconnect Mode. With this option enabled, you can set a password on the serial port. The default setting is all 0s.
8: Setup Mode: Advanced Settings

Expert Settings (Option 5)

Note: You can change these settings using Telnet or serial connections only, not on the Web-Manager.

Caution: Changing the expert settings can drastically affect the performance and access to the product. These settings should only be changed by an experienced network administrator.

The default settings are listed below:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Keepalive time in s (1s – 65s; 0s=disable)</td>
<td>45</td>
</tr>
<tr>
<td>ARP Cache timeout in s (1s – 600s)</td>
<td>600</td>
</tr>
<tr>
<td>Disable Monitor Mode @ bootup</td>
<td>Enabled</td>
</tr>
<tr>
<td>HTTP Port Number (1-65535)</td>
<td>80</td>
</tr>
<tr>
<td>MTU Size (512 – 1400)</td>
<td>0 (resulting in an operational value of 1400)</td>
</tr>
<tr>
<td>Enable alternate MAC</td>
<td>Disabled (OEM use only)</td>
</tr>
<tr>
<td>Ethernet connection type</td>
<td>0 (resulting in auto-negotiation)</td>
</tr>
</tbody>
</table>

TCP Keepalive time in seconds

This option allows you to change how many seconds the unit waits during a silent connection before attempting to see if the currently connected network device is still on the network. If the unit gets no response, it drops that connection. The default setting is 45.
ARP Cache timeout in seconds

Whenever the unit communicates with another device on the network, it adds an entry into its ARP table. The ARP Cache timeout option allows you to define how many seconds (1-600) the unit will wait before timing out this table. The default setting is 600.

```
ARP Cache timeout in s (1s - 600s): (600)? _
```

Disable Monitor Mode at bootup

This option allows you to disable all entries into Monitor Mode during startup, except for the ‘xxx’ sequence. This prevents entry using yyy, zzz, xx1, and yy1 key sequences (only during the bootup sequence). The default for Monitor Mode at bootup is N (No). (See 10: Monitor Mode.)

```
Monitor Mode @ bootup : enabled
```

HTTP Port Number

This option allows the configuration of the web server port number. The valid range is 1-65535. The default HTTP port number is 80.

```
HTTP Port Number : (80) ? _
```

MTU Size

The Maximum Transmission Unit (MTU) is the largest physical packet size a network can transmit for TCP and UDP. Enter between 512 and 1400 bytes. The default setting is 1400 bytes.

```
MTU Size: (1400) ? _
```

Enable alternate MAC

If necessary, enable the alternate MAC address (if specified in the OEM setup record). The default setting is N (No).

```
Enable alternate MAC (N) ? _
```

Ethernet connection type

The SDS1101 allows for the Ethernet speed and duplex to be manually configured. Enter 0 for auto-negotiation (default). To select the speed and duplex, enter one of the following: 2 (10Mbit/half duplex), 3 (10Mbit/full duplex), 4 (100Mbit/half duplex), or 5 (100Mbit/full duplex).

```
Ethernet connection type: (0) ? _
```
Security Settings (Option 6)

You can change security settings by means of Telnet or serial connections only, not on the Web-Manager. We recommend that you set security over the dedicated network or over the serial setup to prevent eavesdropping.

Caution: Disabling both Telnet Setup and Port 77FE will prevent users from accessing the setup menu from the network. Disabling Port 77FE also disables the Web from configuring the device.

Select 7 to configure security settings.

Disable SNMP

This setting allows you to disable the SNMP protocol on the unit for security reasons. The default setting is **N (No)**.

![Disable SNMP (N) ?](image)

SNMP Community Name

The SNMP Community Name is a required field for NMS to read or write to a device. Enter a string of 1 to 13 characters. The default setting is **public**.

![SNMP Community Name (public):](image)

The default entry is **public**. The current value is displayed in parentheses.

Disable Telnet Setup

Note: If you choose to disable this option, keep in mind that disabling both Telnet Setup and Port 77FE will prevent users from accessing the setup menu from the network.

This setting defaults to the **N (No)** option. The **Y (Yes)** option disables access to Setup Mode by Telnet (port 9999). It only allows access locally using the web pages and the serial port of the unit.

![Disable Telnet Setup (N) ?](image)
Disable TFTP Firmware Update

This setting defaults to the N (No) option. The Y (Yes) option disables the use of TFTP to perform network firmware upgrades. With this option, you can download firmware upgrades over the serial port using DeviceInstaller’s Recover Firmware procedure. (See 9: Firmware Upgrades.)

DISABLE TFTP Firmware Update (N) ? _

Disable Port 77FE (Hex)

Note: If you choose to disable this option, keep in mind that disabling both Telnet Setup and Port 77FE will prevent users from accessing the setup menu from the network.

Port 77FE is a setting that allows DeviceInstaller, Web-Manager, and custom programs to configure the unit remotely. You may wish to disable this capability for security purposes.

DISABLE Port 77FEh (N) ? _

The default setting is the N (No) option, which enables remote configuration. You can configure the unit by using DeviceInstaller, web pages, Telnet, or serial configuration.

The Y (Yes) option disables remote configuration and web sites.

Disable Web Server

This setting defaults to the N (No) option. The Y (Yes) option disables the web server.

DISABLE Web Server (N) ? _

Disable Web Setup

The Y (Yes) option disables configuration using the Web-Manager. This setting defaults to the N (No) option.

DISABLE Web Setup (N) ? _

Disable ECHO Ports

This setting controls whether port 7 echoes characters it receives. The default setting is Y (Yes), which disables ECHO ports.

DISABLE ECHO ports (Y) ? _

Enable Enhanced Password

This setting defaults to the N (No) option, which allows you to set a 4-character password that protects Setup Mode by means of Telnet and web pages. The Y (Yes) option allows you to set an extended security password of 16-characters for protecting Telnet and Web Page access.

ENABLE Enhanced Password (N) ? _
Enable Encryption

Rijndael is the block cipher algorithm chosen by the National Institute of Science and Technology (NIST) as the Advanced Encryption Standard (AES) to be used by the US government. The SDS supports 128-, 192-, and 256-bit encryption key lengths.

Follow the steps below to configure AES encryption on the SDS.

NOTE: Configuring encryption should be done through a local connection to the serial port of the SDS, or via a secured network connection. Initial configuration information including the encryption key are sent in clear text over the network.

1. Telnet to the configuration port on the SDS (Port 9999).

 An example of a Telnet command syntax is shown below. In the command examples below, replace the x’s with the IP address of the SDS.

 Microsoft Windows command syntax: telnet xxx.xxx.xxx.xxx 9999
 Unix command syntax: telnet xxx.xxx.xxx.xxx 9999

2. When prompted, press Enter to go into setup mode.

3. At the Change Setup menu, select option 6 for security.

 ![Figure 8-3. Encryption Keys](image)

4. When prompted to enable encryption, press Y.

5. Enter the encryption key length when prompted. The SDS supports 128-, 192-, and 256-bit encryption key lengths.

6. When prompted to change keys, press Y.

7. At the **Enter Keys** prompts, enter your encryption key. The encryption keys are entered in hexadecimal. The hexadecimal values are echoed as asterisks to prevent onlookers from seeing the key. Hexadecimal values are 0-9 and A-F.
 - For a 128-bit key length, enter 32 hexadecimal characters.
 - For a 192-bit key length, enter 48 hexadecimal characters.
 - For a 256-bit key length, enter 64 hexadecimal characters

8. Continue pressing **Enter** until you return to the Change Setup menu.

9. At the Change Setup menu, select option 9 to save and exit.

Encryption only applies to the port selected for data tunneling (default 10001), regardless of whether you are using TCP or UDP.

Generally, one of two situations applies:
Setup Mode: Advanced Settings

- Encrypted SDS-to-SDS communication. Be sure to configure both SDS devices with the same encryption key.

Third-party application to SDS-encrypted communication: SDS uses standard AES encryption protocols. To communicate successfully, products and applications on the peer side must use the same protocols and the same shared key as the SDS. To ease the development process, Lantronix provides an AES encryption DLL for Windows and protocol source code samples. See the document “Encryption Enabling Serial Devices” on the Lantronix web site (www.lantronix.com) for more instructions and sample code.

Default Settings (Option 7)

Select 7 to reset the unit’s Channel 1 configuration and expert settings to the default settings. The server configuration settings for IP address, gateway IP address, and netmask remain unchanged. The configurable pins’ settings also remain unchanged. The specific settings that this option changes are listed below:

Channel 1 Configuration Defaults

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baudrate</td>
<td>9600</td>
</tr>
<tr>
<td>I/F Mode</td>
<td>4C (1 stop bit, no parity, 8 bit, RS-232C)</td>
</tr>
<tr>
<td>Own TCP port number</td>
<td>10001</td>
</tr>
<tr>
<td>Connect Mode</td>
<td>C0 (always accept incoming connection; no active connection startup)</td>
</tr>
<tr>
<td>Hostlist retry counter</td>
<td>3</td>
</tr>
<tr>
<td>Hostlist retry timeout</td>
<td>250 (msec)</td>
</tr>
<tr>
<td>Start character for serial channel 1</td>
<td>0x0D (CR)</td>
</tr>
<tr>
<td>All other parameters</td>
<td>0</td>
</tr>
</tbody>
</table>

Expert Settings Defaults

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Keepalive time in s</td>
<td>45</td>
</tr>
<tr>
<td>ARP Cache timeout in s</td>
<td>600</td>
</tr>
<tr>
<td>Disable Monitor Mode @ bootup</td>
<td>No</td>
</tr>
<tr>
<td>HTTP Port Number (1-65535)</td>
<td>80</td>
</tr>
<tr>
<td>MTU Size (512 – 1400)</td>
<td>1400</td>
</tr>
<tr>
<td>Enable alternate MAC</td>
<td>No (for OEM use only)</td>
</tr>
<tr>
<td>Ethernet Connection Type</td>
<td>0 (auto-negotiate)</td>
</tr>
</tbody>
</table>
Security Settings Defaults

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable SNMP</td>
<td>No</td>
</tr>
<tr>
<td>SNMP community name</td>
<td>public</td>
</tr>
<tr>
<td>Disable Telnet setup</td>
<td>No</td>
</tr>
<tr>
<td>Disable TFTP Firmware Update</td>
<td>No</td>
</tr>
<tr>
<td>Disable Port 77FEh</td>
<td>No</td>
</tr>
<tr>
<td>Disable Web Server</td>
<td>No</td>
</tr>
<tr>
<td>Disable Web Setup</td>
<td>No</td>
</tr>
<tr>
<td>Disable ECHO ports</td>
<td>Yes</td>
</tr>
<tr>
<td>Enable Enhanced Password</td>
<td>No</td>
</tr>
</tbody>
</table>
9: Firmware Upgrades

Obtaining Firmware

You can obtain the most up-to-date firmware and release notes for the unit from the Lantronix web site (www.lantronix.com) or by using anonymous FTP (ftp.lantronix.com).

Reloading Firmware

There are several ways to update the unit's internal operational code (*.ROM): using DevicInstaller (the preferred way), using TFTP, or using the serial port. You can also update the unit's internal Web interface (*.COB) using TFTP or DevicInstaller.

Here are typical names for those files. Check the Lantronix web site for the latest versions and release notes.

<table>
<thead>
<tr>
<th>ROM File</th>
<th>COB</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS1101_6102.rom</td>
<td>SDS1101_webm_1404.cob</td>
</tr>
</tbody>
</table>

Please refer to the DevicInstaller online Help for information about reloading firmware using DevicInstaller. The other methods are discussed below.

Using TFTP: Graphical User Interface

To download new firmware from a computer:

1. Use a TFTP client to send a binary file to the unit (*.ROM to upgrade the unit's internal operational code and *.COB to upgrade its internal Web interface).

 Note: TFTP requires the .ROM (binary) version of the unit's internal operational code.

2. In the TFTP server field, enter the IP address of the unit being upgraded.

3. Select Upload operation and Binary format.

4. Enter the full path of the firmware file in the Local file name field.

5. In the Remote file name field, enter the current internal operational code (D3) or WEB1 to WEB6 for the internal Web interface.

6. Click the Upload Now button to transfer the file to the unit.
After the firmware has been loaded and stored (approximately 8 seconds to complete) the unit performs a power reset.

Using TFTP: Command Line Interface

To download new firmware from a computer:

1. Enter the following from a TFTP command line interface:

   ```
tftp –i <ip address> put <local filename> <destination file name>
   
   The following examples demonstrate the TFTP command sequence to download the .rom file and the .cob file:
   
   ```tftp –i 192.168.1.111 put SDS1101_6102.rom D3
 tftp –i 192.168.1.111 put SDS1101_webm_1404.cob WEB6```

2. In the Remote file name field, enter the current internal operational code (D3) or WEB1 to WEB6 for the internal Web interface.

Recovering the Firmware Using the Serial Port and DeviceInstaller

If for some reason the firmware is damaged, you can recover the firmware file by using DeviceInstaller to download the *.ROM file over the serial port.

To recover firmware:

1. Start DeviceInstaller. If your PC has more than one network adapter, a message displays. Select an adapter and click OK.

2. From the **Tools** menu, select **Advanced/Recover Firmware**. The Serial Port Firmware Upgrade window displays.

3. For **Port on PC**, enter the COM port on the PC that is connected to the serial port of the Lantronix unit.

4. For **Device Model**, be sure the appropriate device (e.g., SDS1101) displays.
5. For **Firmware File**, click the **Browse** button and go to the location where the firmware file resides.

Note: Make sure the SDS1101 on which you are recovering firmware is connected to this selected port on your PC.

6. Click **OK** to download the file.

7. When prompted, reset the device. Status messages and a progress bar at the bottom of the screen show the progress of the file transfer. When the file transfer completes, the message “**Successful, Click OK to Close**” displays.

8. Click the **OK** button to complete this procedure.
10: Monitor Mode

Monitor Mode is a command-line interface used for diagnostic purposes.

There are two ways to enter Monitor Mode: locally using the serial port or remotely using the network.

Entering Monitor Mode Using the Serial Port

To enter Monitor Mode locally:

1. Follow the same steps used for setting the serial configuration parameters (see Serial Port on page 37).

2. Instead of typing three x keys, however:
 a) Type zzz (or xx1) to enter Monitor Mode with network connections.
 b) Type yyy (or yy1) to enter Monitor Mode without network connections.

A 0> prompt indicates that you have successfully entered Monitor Mode.

Entering Monitor Mode Using the Network Port

To enter Monitor Mode using a Telnet connection:

1. Establish a Telnet session to the configuration port (9999). The following message appears:

 MAC address 00204A83069F
 Software version V6.1.0.1T18 (06011) SDS1101

2. Type M (upper case) immediately.

A 0> prompt indicates that you have successfully entered Monitor Mode.

Monitor Mode Commands

The following commands are available in Monitor Mode. Many commands have an IP address as an optional parameter (xxx.xxx.xxx.xxx). If you enter the IP address, the command is applied to another unit with that IP address. If you do not enter the IP address, the command is executed locally.

Note: All commands must be in capital letters. Responses to some of the commands are in Intel Hex format.
Table 10-1. Monitor Mode Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS x.x.x.x</td>
<td>Version</td>
<td>Queries software header record (16 bytes) of unit with IP address x.x.x.x.</td>
</tr>
<tr>
<td>GC x.x.x.x</td>
<td>Get Configuration</td>
<td>Gets configuration of unit with IP address x.x.x.x as hex records (120 bytes).</td>
</tr>
<tr>
<td>SC x.x.x.x</td>
<td>Send Configuration</td>
<td>Sets configuration of unit with IP address x.x.x.x from hex records.</td>
</tr>
<tr>
<td>PI x.x.x.x</td>
<td>Ping</td>
<td>Pings unit with IP address x.x.x.x to check device status.</td>
</tr>
<tr>
<td>AT</td>
<td>ARP Table</td>
<td>Shows the unit’s ARP table entries.</td>
</tr>
<tr>
<td>TT</td>
<td>TCP Connection Table</td>
<td>Shows all incoming and outgoing TCP connections.</td>
</tr>
<tr>
<td>NC</td>
<td>Network Connection</td>
<td>Shows the unit’s IP configuration.</td>
</tr>
<tr>
<td>RS</td>
<td>Reset</td>
<td>Resets the unit’s power.</td>
</tr>
<tr>
<td>QU</td>
<td>Quit</td>
<td>Exits diagnostics mode.</td>
</tr>
<tr>
<td>G0, G1,,Ge, Gf</td>
<td>Get configuration from memory page</td>
<td>Gets a memory page of configuration information from the device.</td>
</tr>
<tr>
<td>S0, S1,...,Se, Sf</td>
<td>Set configuration to memory page</td>
<td>Sets a memory page of configuration information on the device.</td>
</tr>
<tr>
<td>GM</td>
<td>Get MAC address</td>
<td>Shows the unit’s 6-byte MAC address.</td>
</tr>
<tr>
<td>SS</td>
<td>Set Security record</td>
<td>Sets the Security record without the encryption key and length parameters. The entire record must still be written, but the encryption-specific bytes do not need to be provided (they can be null since they are not overwritten).</td>
</tr>
</tbody>
</table>

Note: Entering any of the commands listed above generates one of the following command response codes:

Table 10-2. Command Response Codes

<table>
<thead>
<tr>
<th>Response</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0></td>
<td>OK; no error</td>
</tr>
<tr>
<td>1></td>
<td>No answer from remote device</td>
</tr>
<tr>
<td>2></td>
<td>Cannot reach remote device or no answer</td>
</tr>
<tr>
<td>8></td>
<td>Wrong parameter(s)</td>
</tr>
<tr>
<td>9></td>
<td>Invalid command</td>
</tr>
</tbody>
</table>
11: Troubleshooting and Contact Information

This chapter discusses how you can diagnose and fix errors quickly without having to contact a dealer or Lantronix. It helps to connect a terminal to the serial port while diagnosing an error to view summary messages that may display. When troubleshooting, always ensure that the physical connections (power cable, network cable, and serial cable) are secure.

Note: Some unexplained errors might be caused by duplicate IP addresses on the network. Make sure that your unit’s IP address is unique.

When troubleshooting the following problems, make sure that the SDS1101 is powered up. Confirm that you are using a good network connection.

LEDs

The SDS has the following LEDs, which help you diagnose problems.

- Power LED (green)
- Ethernet 10/100 Link (yellow = 10 Mb/green = 100 Mb)
- Ethernet Half/Full Duplex Activity (yellow = Half Duplex/green = Full Duplex)
- Diagnostic (red)
- Status (green)

Simultaneously lit Diagnostic (red) and Status (green) LEDs mean something is wrong. If the Diagnostic LED is lit or blinking, count the number of times the Status LED blinks between its pauses. The following table explains the LED functions:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Diagnostic LED</th>
<th>Channel 1 Status LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Errors</td>
<td>OFF</td>
<td>N/A</td>
</tr>
<tr>
<td>Network controller error</td>
<td>ON</td>
<td>Blinks 3x/4 seconds</td>
</tr>
<tr>
<td>Serial number storage checksum error</td>
<td>ON</td>
<td>Blinks 4x/4 seconds</td>
</tr>
<tr>
<td>Duplicate IP address present</td>
<td>ON</td>
<td>Blinks 5x/4 seconds</td>
</tr>
<tr>
<td>No DHCP response</td>
<td>Blinks 2x/second</td>
<td>Blinks 5x/4 seconds</td>
</tr>
<tr>
<td>Setup menu active</td>
<td>Blinks 2x/second</td>
<td>Follows Diagnostic LED for 2 seconds, off for 2 seconds</td>
</tr>
</tbody>
</table>
Problems and Error Messages

<table>
<thead>
<tr>
<th>Problem/Message</th>
<th>Reason</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>When you issue the <code>ARP -S</code> command in Windows, the "ARP entry addition failed: 5" message displays.</td>
<td>Your currently logged-in user does not have the correct rights to use this command on this PC.</td>
<td>Have someone from your IT department log you in with sufficient rights.</td>
</tr>
<tr>
<td>When you attempt to assign an IP address to the unit by the ARP method, the "Press Enter to go into Setup Mode" error "(described below) message displays. Now when you Telnet to the device server, the connection fails.</td>
<td>When you Telnet to port 1 on the device server, you are only assigning a temporary IP address. When you Telnet into port 9999 and do not press Enter quickly, the device server reboots, causing it to lose the IP address.</td>
<td>Telnet back to Port 1. Wait for it to fail, then Telnet to port 9999 again. Make sure you press Enter quickly.</td>
</tr>
<tr>
<td>When you Telnet to port 9999, the "Press Enter to go into Setup Mode" message displays. However, nothing happens when you press Enter, or your connection is closed.</td>
<td>You did not press Enter quickly enough. You only have 5 seconds to press Enter before the connection is closed.</td>
<td>Telnet to port 9999 again, but press Enter as soon as you see the "Press Enter to go into Setup Mode" message.</td>
</tr>
<tr>
<td>When you Telnet to port 1 to assign an IP address to the device server, the Telnet window does not respond for a long time.</td>
<td>You may have entered the Ethernet address incorrectly with the ARP command.</td>
<td>Confirm that the Ethernet address that you entered with the ARP command is correct. The Ethernet address may only include numbers 0-9 and letters A-F. In Windows and usually in Unix, the segments of the Ethernet address are separated by dashes. In some forms of Unix, the Ethernet address is segmented with colons.</td>
</tr>
<tr>
<td></td>
<td>The IP address you are trying to assign is not on your logical subnet.</td>
<td>Confirm that your PC has an IP address and that it is in the same logical subnet that you are trying to assign to the device server.</td>
</tr>
<tr>
<td></td>
<td>The device server may not be plugged into the network properly.</td>
<td>Make sure that the Link LED is lit. If the Link LED is not lit, then the device server is not properly plugged into the network.</td>
</tr>
<tr>
<td>Problem/Message</td>
<td>Reason</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>When you try to assign an IP with DeviceInstaller, you get the following:</td>
<td>The cause is most likely one of the following:</td>
<td>Double-check the parameters that you specified.</td>
</tr>
<tr>
<td>"No response from device! Verify the IP, Hardware Address and Network Class.</td>
<td>The hardware address you specified is incorrect.</td>
<td>Note: You cannot assign an IP address to a device server through a router.</td>
</tr>
<tr>
<td>Please try again."</td>
<td>The IP address you are trying to assign is not a valid IP for your logical subnet.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>You did not choose the correct subnet mask.</td>
<td></td>
</tr>
<tr>
<td>The device server is not communicating with the serial device to which it is</td>
<td>The most likely reason is the wrong serial settings were chosen.</td>
<td></td>
</tr>
<tr>
<td>attached.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The device server is not communicating with the serial device to which it is</td>
<td>The most likely reason is the wrong serial settings were chosen.</td>
<td></td>
</tr>
<tr>
<td>attached.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The device server is not communicating with the serial device to which it is</td>
<td>The most likely reason is the wrong serial settings were chosen.</td>
<td></td>
</tr>
<tr>
<td>attached.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When you try to enter the setup mode on the device server using the serial port</td>
<td>The issue is most likely something covered in the previous problem, or</td>
<td>Double-check everything in the problem above. Confirm that Caps Lock is not on.</td>
</tr>
<tr>
<td>you get no response.</td>
<td>possibly, you have Caps Lock on.</td>
<td></td>
</tr>
<tr>
<td>You can ping the device server, but not Telnet to the device server on port</td>
<td>There may be an IP address conflict on your network</td>
<td></td>
</tr>
<tr>
<td>9999.</td>
<td>You are not Telneting to port 9999.</td>
<td></td>
</tr>
<tr>
<td>You can ping the device server, but not Telnet to the device server on port</td>
<td>The Telnet configuration port (9999) is disabled within the device server</td>
<td></td>
</tr>
<tr>
<td>9999.</td>
<td>security settings.</td>
<td></td>
</tr>
<tr>
<td>With DeviceInstaller, you get the Wrong Password error when you try to</td>
<td>The file you are attempting to load is the incorrect firmware file for</td>
<td>Download the correct firmware file from the Lantronix website.</td>
</tr>
<tr>
<td>upgrade the firmware.</td>
<td>the SDS.</td>
<td></td>
</tr>
</tbody>
</table>
Problem/Message

The device server appears to be set up correctly, but you are not communicating with your device attached to the device server across the network.

<table>
<thead>
<tr>
<th>Reason</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you are sure that the serial port setting is correct, then you may not be connecting to the correct socket of the device server. Another possibility is that the device server is not set up correctly to make a good socket connection to the network.</td>
<td>You can check to see whether there is a socket connection to or from the SDS by looking at the Status LED. If the Status LED is blinking consistently, then there is a good socket connection. If the Status LED is solid green, then the socket connection does not exist. Use the Connect Mode option C0 for making a connection to the SDS from the network. Use Connect Mode option C1 or C5 for a connection to the network from the SDS.</td>
</tr>
</tbody>
</table>

When connecting to the Web-Manager within the device server, the "No Connection With The Device Server" message displays.

<table>
<thead>
<tr>
<th>Reason</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your computer is not able to connect to port 30718 (77FEh) on the device server.</td>
<td>Make sure that port 30718 (77FEh) is not blocked with any router that you are using on the network. Also, make sure that port 77FEh is not disabled within the Security settings of the device server.</td>
</tr>
</tbody>
</table>

Technical Support

If you are experiencing an error that is not described in this chapter, or if you are unable to fix the error, you have the following options:

To check our online knowledge base or send a question to Technical Support, go to http://www.lantronix.com/support.

Technical Support Europe, Middle East, and Africa

Phone: +33 (0) 1 39 30 41 72

Email: eu_techsupp@lantronix.com or eu_support@lantronix.com

Firmware downloads, FAQs, and the most up-to-date documentation are available at: www.lantronix.com/support

When you report a problem, please provide the following information:

- Your name, and your company name, address, and phone number
- Lantronix model number
- Lantronix MAC number
- Software version (on the first screen shown when you Telnet to port 9999)
- Description of the problem
- Status of the unit when the problem occurred (please try to include information on user and network activity at the time of the problem)
12: Connections and Pinouts

Serial Port

The SDS has a female DCE DB25 serial port that supports RS-232 and RS-485/422 serial standards (software selectable) up to 230 Kbaud.

Figure 12-1. Serial Interface

![DB25 Serial Port Diagram]

Serial Connector Pinouts

The unit’s female DB25 connector provides an RS-232C, RS-485, or RS-422 DCE serial port. The default serial port settings are 9600 baud, 8 bits, no parity, and 1 stop bit.

Figure 12-2. DB25 Female DCE Interface RS232

![DB25 Female DCE Interface RS232 Diagram]
When attaching the DB25 of the SDS to the DB9 com port on a PC, use a standard straight-through serial cable. The figure below shows the pinouts for a DB25 to DB9 straight-through cable, often referred to as a "Modem Cable".

To configure the SDS using the DB9 serial port, you need only pin out the TXD, RXD, and GND signals.
The unit’s back panel contains a power plug and an RJ45 (10/100) Ethernet port.

Network Port

The unit’s back panel contains a power plug and an RJ45 (10/100) Ethernet port.

Figure 12-5. Modem Cable

Lantronix Part Number

500-163

<table>
<thead>
<tr>
<th>DB-25 Male</th>
<th>DB-9 Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTR</td>
<td>4 DTR</td>
</tr>
<tr>
<td>DSR</td>
<td>6 DSR</td>
</tr>
<tr>
<td>DCD</td>
<td>5 DCD</td>
</tr>
<tr>
<td>TXD</td>
<td>3 TXD</td>
</tr>
<tr>
<td>RXD</td>
<td>2 RXD</td>
</tr>
<tr>
<td>GND</td>
<td>7 GND</td>
</tr>
<tr>
<td>RTS</td>
<td>1 RTS</td>
</tr>
<tr>
<td>CTS</td>
<td>5 CTS</td>
</tr>
</tbody>
</table>

Figure 12-6. Network Interface

RJ45 Ethernet Port Power Plug
Ethernet Connector Pinouts

The SDS1101 supports 10/100 Mbps half or full duplex Ethernet through an RJ45 connector.

Figure 12-7. RJ45 Ethernet Connector

Power Plug

Power input on the power plug is 9 - 30 VDC (center +) or 10-24 VAC (1.5W maximum power required).
Technical Specifications

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Lantronix DSTNI-EX 48 MHz clock</td>
</tr>
<tr>
<td>Internal CPU Memory</td>
<td>256 KB zero wait state SRAM</td>
</tr>
<tr>
<td>Flash</td>
<td>2 MB Flash</td>
</tr>
<tr>
<td>EEPROM</td>
<td>2 KB EEPROM</td>
</tr>
<tr>
<td>Serial Interface</td>
<td>1 DB25F DCE serial port</td>
</tr>
<tr>
<td></td>
<td>Software-selectable baud rate from 300 to 230 Kbaud</td>
</tr>
<tr>
<td></td>
<td>Software-selectable RS232, RS422 or RS485 (2 and 4 wire support)</td>
</tr>
<tr>
<td>Serial Line Formats</td>
<td>Characters: 7 or 8 data bits</td>
</tr>
<tr>
<td></td>
<td>Stop bits: 1 or 2</td>
</tr>
<tr>
<td></td>
<td>Parity: odd, even, none</td>
</tr>
<tr>
<td>Modem Control</td>
<td>DTR, DSR</td>
</tr>
<tr>
<td>Flow Control</td>
<td>Hardware: CTS/RTS</td>
</tr>
<tr>
<td></td>
<td>Software: XON/XOFF</td>
</tr>
<tr>
<td>Power Input</td>
<td>9-30 VDC or 9-24 VAC on barrel connector (1.5 Watts maximum consumption)</td>
</tr>
<tr>
<td></td>
<td>9-30 VDC on DB25F serial interface</td>
</tr>
<tr>
<td>Network Interface</td>
<td>1 RJ45 10Base-T/100Base-TX Ethernet port</td>
</tr>
<tr>
<td></td>
<td>Software selectable Ethernet speed 10/100/Auto</td>
</tr>
<tr>
<td></td>
<td>Software selectable Half/Full/Auto duplex</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Height: 2.3 cm (0.9 in)</td>
</tr>
<tr>
<td></td>
<td>Width: 6.4 cm (2.5 in)</td>
</tr>
<tr>
<td></td>
<td>Depth: 9.0 cm (3.5 in)</td>
</tr>
<tr>
<td>Weight</td>
<td>0.20 kg (0.45 lb)</td>
</tr>
<tr>
<td>Temperature</td>
<td>Operating range: 0° to 60° C (32° to 140° F)</td>
</tr>
<tr>
<td></td>
<td>Note: Operating range for SDS1101-IAP only: -40° to 70° C (-40° to 158° F)</td>
</tr>
<tr>
<td></td>
<td>Storage -40° to 85° C (-40 to 185° F)</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>Operating 10% to 90% non-condensing, 40% to 60% recommended</td>
</tr>
<tr>
<td></td>
<td>Storage 10% to 90% non-condensing</td>
</tr>
<tr>
<td>Case</td>
<td>Metal enclosure with integrated wall mounts</td>
</tr>
<tr>
<td></td>
<td>Optional 35 mm Din Rail mount available</td>
</tr>
<tr>
<td>Protocols Supported</td>
<td>ARP, UDP/IP, TCP/IP, Telnet, ICMP, SNMP, DHCP, BOOTP, TFTP, and HTTP</td>
</tr>
<tr>
<td>Installable Industrial Protocols</td>
<td>ModBus TCP, ModBus ASCII/RTU, DF1 Multi-Master (IAP version only)</td>
</tr>
<tr>
<td>Management</td>
<td>Internal web server</td>
</tr>
<tr>
<td></td>
<td>SNMP (read only)</td>
</tr>
<tr>
<td></td>
<td>Serial login</td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Technical Specifications | Telnet login
DeviceInstaller software
System Software DeviceInstaller, Windows® 95/98/ME/NT/2000/XP-based configuration software
Com Port Redirector, Windows® 98/NT/2000/XP-based virtual com port software
LEDs
Power
10/100 Mb Link
10/100 Activity
Diagnostic Status
Emissions
FCC Part 15 Subpart B Class A
ICES-003 Issue 4 February 2004 Class A
AS/NZS CISPR 22: 2004 Class A
VCCI V-3/2005.04 Class A
EN61000-3-2: 2000 Class A
Immunity
IEC_61000-4-2: 1995 (Direct/Indirect)
IEC_61000-4-3: 1995
IEC_61000-4-4: 1995
IEC_61000-4-5: 1995
IEC_61000-4-6: 1996
IEC_61000-4-8: 1993
IEC_61000-4-11: 1994
Isolation
Agency Approvals | Designed with protections against transients and ESD for use under harsh environments
Serial Port: 15 KV ESD protection on RS232 and RS422/485 transceivers
Power Input: Up to non-repeated 600 W 10/100 usec pulse protection against transient over voltages
Ethernet Port: 1500 VAC isolation shielded with shield connected to chassis ground for signal integrity and ESD protection | UL, CSA, FCC, CE, TUV, CTick, VCCI |
A: Alternative Ways to Assign an IP Address

Earlier chapters describe how to assign a static IP address using DeviceInstaller, Web Manager, and Setup Mode (through a Telnet or serial connection). This section covers other methods for assigning an IP address over the network.

DHCP

The unit ships with a default IP address of 0.0.0.0, which automatically enables DHCP. If a DHCP server exists on the network, it provides the unit with an IP address, gateway address, and subnet mask when the unit boots up.

You can use the DeviceInstaller software to search the network for the DHCP-assigned IP address and add it to the list of devices retrieved.

Note: This DHCP address does not appear in the unit’s Setup Mode or in Web Manager. You can determine your unit’s DHCP-assigned IP address in Monitor Mode. When you enter Monitor Mode from the serial port with network connection enabled and issue the NC (Network Communication) command, you see the unit’s IP configuration.

AutoIP

The unit ships with a default IP address of 0.0.0.0, which automatically enables Auto IP within the unit. AutoIP is an alternative to DHCP that allows hosts to obtain an IP address automatically in smaller networks that may not have a DHCP server. A range of IP addresses (from 169.254.0.1 to 169.254.255.1) has been explicitly reserved for AutoIP-enabled devices. Do not use this range of Auto IP addresses over the Internet.

◆ If your unit cannot find a DHCP server, and you have not manually assigned an IP address to it, the unit automatically selects an address from the AutoIP reserved range. Then, your unit sends out a (ARP) request to other nodes on the same network to see whether the selected address is being used.

◆ If the selected address is not in use, then the unit uses it for local subnet communication.

◆ If another device is using the selected IP address, the unit selects another address from the AutoIP range and reboots. After reboot, the unit sends out another ARP request to see if the selected address is in use, and so on.

AutoIP does not replace DHCP. The unit continues to look for a DHCP server on the network. If it finds a DHCP server, the unit switches to the DHCP server-provided address and reboots.

Note: If a DHCP server is found, but it denies the request for an IP address, the unit does not attach to the network, but waits and retries.

AutoIP can be disabled by setting the unit’s IP address to 0.0.1.0. This setting enables DHCP but disables AutoIP.
BOOTP

Similar to DHCP, but for smaller networks. Automatically assigns the IP address for a specific duration of time.

ARP and Telnet

If the unit has no IP address, you can use Address Resolution Protocol (ARP) method from UNIX and Windows-based systems to assign a temporary IP address.

To assign a temporary IP address:

1. On a UNIX or Windows-based host, create an entry in the host's ARP table using the intended IP address and the hardware address of the unit (on the product label on the bottom of the unit).

   ```
   $ [for Unix]
   $ arp -s 191.12.3.77 00:20:4a:xx:xx:xx
   
   $ [for Windows]
   $ arp -s 191.12.3.77 00-20-4a-xx-xx-xx
   ```

 Note: For the ARP command to work on Windows 95, the ARP table on the PC must have at least one IP address defined other than its own.

2. If you are using Windows 95, type `arp -A` at the DOS command prompt to verify that there is at least one entry in the ARP table. If the local machine is the only entry, ping another IP address on your network to build a new entry in the ARP table; the IP address must be a host other than the machine on which you are working. Once there is at least one additional entry in the ARP table, use the following command to ARP an IP address to the unit:

   ```
   $ [for Unix]
   $ arp -s 191.12.3.77 00:20:4a:xx:xx:xx
   
   $ [for Windows]
   $ arp -s 191.12.3.77 00-20-4a-xx-xx-xx
   ```

3. Open a Telnet connection to port 1. The connection fails quickly, but the unit temporarily changes its IP address to the one designated in this step.

   ```
   $ telnet 191.12.3.77 1
   ```

4. Open a Telnet connection to port 9999, and press Enter within **five seconds** to go into Setup Mode. If you wait longer than five seconds, the unit reboots.

   ```
   $ telnet 191.12.3.77 9999
   ```

 Note: The IP address you just set is temporary and reverts to the default value when the unit’s power is reset, unless you configure the unit with a static IP address and store the changes permanently.
Many of the unit's configuration procedures require assembling a series of options (represented as bits) into a complete command (represented as a byte). Convert the resulting binary value to a hexadecimal representation.

Converting Binary to Hexadecimal

Following are two simple ways to convert binary numbers to hexadecimals.

Conversion Table

Hexadecimal digits have values ranging from 0 to F, which are represented as 0-9, A (for 10), B (for 11), etc. To convert a binary value (for example, 0100 1100) to a hexadecimal representation, the upper and lower four bits are treated separately, resulting in a two-digit hexadecimal number (in this case, 4C). Use the following table to convert values from binary to hexadecimal.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>B</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>D</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>E</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>F</td>
</tr>
</tbody>
</table>
Another simple way to convert binary to hexadecimals is to use a scientific calculator, such as the one available on Windows' operating systems. For example:

1. On the Windows' Start menu, click **Programs ➔ Accessories ➔ Calculator**.

2. On the **View** menu, select **Scientific**. The scientific calculator displays.

3. Select **Bin** (Binary), and type the number to convert.

4. Click **Hex**. The hexadecimal value displays.
C: Warranty

Lantronix warrants each Lantronix product to be free from defects in material and workmanship for a period of **TWO YEARS** after the date of shipment. During this period, if a customer is unable to resolve a product problem and Lantronix Technical Support determines the product is defective, a Return Material Authorization (RMA) will be issued. Following receipt of an RMA number, the customer shall return the product to Lantronix, freight prepaid. Upon verification of warranty, Lantronix will -- at its option -- repair or replace the product and return it to the customer freight prepaid. If the product is not under warranty, the customer may have Lantronix repair the unit on a fee basis or return it. No services are handled at the customer’s site under this warranty. This warranty is voided if the customer uses the product in an unauthorized or improper way, or in an environment for which it was not designed.

Lantronix warrants the media containing its software product to be free from defects and warrants that the software will operate substantially according to Lantronix specifications for a period of **60 DAYS** after the date of shipment. The customer will ship defective media to Lantronix. Lantronix will ship the replacement media to the customer.

* * * *

In no event will Lantronix be responsible to the user in contract, in tort (including negligence), strict liability or otherwise for any special, indirect, incidental or consequential damage or loss of equipment, plant or power system, cost of capital, loss of profits or revenues, cost of replacement power, additional expenses in the use of existing software, hardware, equipment or facilities, or claims against the user by its employees or customers resulting from the use of the information, recommendations, descriptions and safety notations supplied by Lantronix. Lantronix liability is limited (at its election) to:

- Refund of buyer’s purchase price for such affected products (without interest)
- Repair or replacement of such products, provided that the buyer follows the above procedures.

There are no understandings, agreements, representations or warranties, express or implied, including warranties of merchantability or fitness for a particular purpose, other than those specifically set out above or by any existing contract between the parties. Any such contract states the entire obligation of Lantronix. The contents of this document shall not become part of or modify any prior or existing agreement, commitment, or relationship.

D: Compliance and Disclaimer

Manufacturer’s Name & Address
Lantronix 15353 Barranca Parkway, Irvine, CA 92618 USA

Declares that the following product:

Product Name Model: SDS1101 Device Server

Conforms to the following standards or other normative documents:

Safety
UL 60950-1
CSA 22.2. No 60950-1-03
EN 60950-1
TUV
VCCI
C-TICK

Electromagnetic Emissions
FCC Part 15 Subpart B Class A
ICES-003 Issue 4 February 2004 Class A
AS/NZS CISPR 22: 2004 Class A
EN61000-3-2: 2000 Class A
VCCI

Electromagnetic Immunity
IEC 61000-4-2: 1995
IEC 61000-4-3: 1995
IEC 61000-4-4: 1995
IEC 61000-4-5: 1995
IEC 61000-4-6: 1996
IEC 61000-4-8: 1993
IEC 61000-4-11: 1994
Disclaimer and Supplementary Information

This product has been designed to comply with the limits for a Class A digital device pursuant to Part 15 of FCC Rules. These limits are designed to provide reasonable protection against such interference when operating in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy, and if not installed and used in accordance with this guide, may cause harmful interference to radio communications. Operation of this equipment of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at user own expense.

This Class A digital apparatus complies with Canadian ICES-003

Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada.

The product complies with the requirements of the Low Voltage Directive 72/23/EEC and the EMC Directive 89/336/EEC.

Encryption: This product includes AES encryption certified by the National Institute of Standard and Technology to FIPS-197 standard certification #120.

Export Control Classification Number 5A002, License exception ENC.

Changes or modifications to this device not explicitly approved by Lantronix will void the user’s authority to operate this device. The information in this guide may change without notice. The manufacturer assumes no responsibility for any errors that may appear in this guide.

Manufacturer’s Contact

Director of Quality Assurance, Lantronix
15353 Barranca Parkway, Irvine, CA 92618 USA
Tel: 949-453-3990
Fax: 949-453-3995
Index

Applications, 10
ARP and Telnet, 78
AutoIP, 16, 77
Binary to hexadecimal conversions, 79
BOOTP, 16, 78
Channel settings, 28, 41
Command line interface, 36
Configuration methods, 12
Connect Mode, 43
Connection settings
 TCP, 30
 UDP, 33
Connectors, 71
Contacts, 2
Default settings
 applying in Setup Mode, 60
 applying in Web-Manager, 35
DeviceInstaller
 accessing the unit, 22
 assigning the IP address, 17
 installing from product CD, 17
DHCP, 16, 77
DHCP name. See
Error messages, 68
Ethernet address, 13
Expert settings, 55
Firmware
 recovering, 63
 upgrading, 62
Gateway, 38
Getting started, 14
Hardware address, 13, 16
Host list settings
 Setup Mode, 46
 Web-Manager, 27
Installation, 15
Internal web server, 12
IP address
 assigning, 17, 24, 38
 automatic assignment, 24
 factory default, 16
 gateway, 38
 other ways to assign, 77
requirement, 16
 searching for on the network, 18
Label, 13
LEDs, 67
MAC address, 13
Modem emulation, 12
Modem Mode, 47
Monitor Mode, 65
Netmask, 39
Network settings, 23
Null modem cable, 72
Package contents, 14
Password for Telnet configuration, 39
Pinouts, 71
 Ethernet connector, 74
 serial connector, 71
Power plug, 73
Problems, 68
Protocols, 12
Redirection software, 11
Required information, 16
RJ45 Ethernet port, 73
RS-232 and RS-485/422 standards, 71
Security settings, 57
Serial port
 accessing Setup Mode, 20
 login, 20
 Serial tunneling, 10
Server settings
 Setup Mode, 38
 Web-Manager, 25
Setup Mode, 36
 accessing by serial port connection, 37
 accessing by Telnet. See
SNMP, 57
TCP settings, 30
Technical specifications
Technical Support, 70
TFTP, 62
Troubleshooting, 8, 67
UDP settings, 33
Warranty, 81
Web-Manager, 22